Microtubules soften due to cross-sectional flattening
被引:33
作者:
Memet, Edvin
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Memet, Edvin
[1
]
Hilitski, Feodor
论文数: 0引用数: 0
h-index: 0
机构:
Brandeis Univ, Dept Phys, Waltham, MA 02254 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Hilitski, Feodor
[2
]
Morris, Margaret A.
论文数: 0引用数: 0
h-index: 0
机构:
Brandeis Univ, Dept Phys, Waltham, MA 02254 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Morris, Margaret A.
[2
]
Schwenger, Walter J.
论文数: 0引用数: 0
h-index: 0
机构:
Brandeis Univ, Dept Phys, Waltham, MA 02254 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Schwenger, Walter J.
[2
]
Dogic, Zvonimir
论文数: 0引用数: 0
h-index: 0
机构:
Brandeis Univ, Dept Phys, Waltham, MA 02254 USA
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Dogic, Zvonimir
[2
,3
]
Mahadevan, L.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Harvard Univ, Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Harvard Univ, Kavli Inst Nanobio Sci & Technol, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Mahadevan, L.
[1
,4
,5
]
机构:
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] Harvard Univ, Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Harvard Univ, Kavli Inst Nanobio Sci & Technol, Cambridge, MA 02138 USA
FLEXURAL RIGIDITY;
THERMAL FLUCTUATIONS;
PERSISTENCE LENGTH;
CARBON NANOTUBES;
OPTICAL TWEEZERS;
SINGLE MICROTUBULE;
BACTERIAL FLAGELLA;
BOND-ENERGIES;
LIVING CELLS;
FILAMENTS;
D O I:
10.7554/eLife.34695
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasingdeformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effect in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.