Regular and chaotic vibrations of deformed nuclei with increasing γ rigidity -: art. no. 102502

被引:21
作者
Cejnar, P [1 ]
Stránsky, P [1 ]
机构
[1] Charles Univ, Inst Nucl & Particle Phys, CR-18000 Prague, Czech Republic
关键词
D O I
10.1103/PhysRevLett.93.102502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study classical trajectories corresponding to L=0 vibrations in the geometric collective model of nuclei with stable axially symmetric quadrupole deformations. It is shown that with increasing stability against the onset of triaxiality the dynamics passes between a fully regular and semiregular limiting regime. In the transitional region, an interplay of chaotic and regular motions results in complex oscillatory dependence of the regular phase space on the Hamiltonian parameter and energy.
引用
收藏
页码:102502 / 1
页数:4
相关论文
共 32 条
[1]   CHAOTIC PROPERTIES OF THE INTERACTING-BOSON MODEL - A DISCOVERY OF A NEW REGULAR REGION [J].
ALHASSID, Y ;
WHELAN, N .
PHYSICAL REVIEW LETTERS, 1991, 67 (07) :816-819
[2]   CHAOS IN THE LOW-LYING COLLECTIVE STATES OF EVEN-EVEN NUCLEI [J].
ALHASSID, Y ;
NOVOSELSKY, A ;
WHELAN, N .
PHYSICAL REVIEW LETTERS, 1990, 65 (24) :2971-2974
[3]   CHAOS IN THE LOW-LYING COLLECTIVE STATES OF EVEN-EVEN NUCLEI - CLASSICAL LIMIT [J].
ALHASSID, Y ;
WHELAN, N .
PHYSICAL REVIEW C, 1991, 43 (06) :2637-2647
[4]  
ALHASSID Y, 1994, PERSPECTIVES INTERAC, P591
[5]   PHASE-SPACE ORGANIZATIONS IN PROLATE AND OBLATE POTENTIALS - CLASSICAL, SEMICLASSICAL, AND QUANTUM RESULTS [J].
ARVIEU, R ;
BRUT, F ;
CARBONELL, J ;
TOUCHARD, J .
PHYSICAL REVIEW A, 1987, 35 (06) :2389-2408
[6]  
Bohr A., 1998, Nuclear Structure, Volume 2: Nuclear Deformations, V2
[7]   Simplified approach to the application of the geometric collective model [J].
Caprio, MA .
PHYSICAL REVIEW C, 2003, 68 (05) :543031-5430313
[8]   Phase transitions in finite nuclei and the integer nucleon number problem [J].
Casten, RF ;
Kusnezov, D ;
Zamfir, NV .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5000-5003
[9]   Quantum phase transitions studied within the interacting boson model [J].
Cejnar, P ;
Jolie, J .
PHYSICAL REVIEW E, 2000, 61 (06) :6237-6247
[10]   CLASSICAL LIMIT OF THE INTERACTING-BOSON MODEL [J].
DIEPERINK, AEL ;
SCHOLTEN, O ;
IACHELLO, F .
PHYSICAL REVIEW LETTERS, 1980, 44 (26) :1747-1750