Embedded processing methods for online visual analysis of laser welding

被引:5
作者
Lahdenoja, Olli [1 ]
Santti, Tero [1 ]
Poikonen, Jonne K. [1 ]
Laiho, Mika [1 ]
Paasio, Ari [1 ]
Pekkarinen, Joonas [2 ,3 ]
Salminen, Antti [2 ,3 ]
机构
[1] Univ Turku, TRC, Turku 20014, Finland
[2] Machine Technol Ctr Turku, Lab Laser Proc, POB 20, Lappeenranta 53851, Finland
[3] LUT, POB 20, Lappeenranta 53851, Finland
基金
芬兰科学院;
关键词
Laser welding; Online monitoring; Seam tracking; Focal plane processor; FPGA; CLOSED-LOOP CONTROL; SEAM TRACKING; SENSOR; SCALE;
D O I
10.1007/s11554-016-0605-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online monitoring and closed-loop control of laser welding offer great possibilities for achieving better weld quality. Earlier work on visual laser welding monitoring has mainly focused on aluminum and fairly thin steel used, for example, in car production. We extend this work by focusing on the automated analysis of the phenomena present in the laser welding of thick steel, where all of the phenomena related to the weld quality are still not well understood or controlled. This paper presents the implementation, test results and analysis for weld monitoring methods implemented on a compact smart camera system. The applied embedded sensor-processor platform allows for high-speed implementation of image capture and dynamic range compression, real-time seam tracking and spatter feature extraction. The paper describes experimental results from implemented real-time algorithms for seam tracking and spatter extraction and additional off-line analysis of methods for spatter tracking and seam widening detection, which are also feasible for future online hardware implementation. The results suggest that it is possible to integrate a compact laser welding analysis system, which achieves analysis rates that are sufficient for real-time process control.
引用
收藏
页码:1099 / 1116
页数:18
相关论文
共 36 条
[21]  
Nicolosi Leonardo, 2009, Proceedings 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta), P2256, DOI 10.1109/IJCNN.2009.5178648
[22]  
Nicolosi L., 2010, 12 INT WORKSH CELL N
[23]   Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J].
Ojala, T ;
Pietikäinen, M ;
Mäenpää, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) :971-987
[24]  
Poikonen J., 2010, P 12 INT WORKSH CELL
[25]   Laser welding of large scale stainless steel aircraft structures [J].
Reitemeyer, D. ;
Schultz, V. ;
Syassen, F. ;
Seefeld, T. ;
Vollertsen, F. .
LASERS IN MANUFACTURING (LIM 2013), 2013, 41 :106-111
[26]  
Reutzel EW, 2006, WELD J, V85, P66
[27]   ACE16k:: The third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs [J].
Rodríguez-Vázquez, A ;
Liñán-Cembrano, G ;
Carranza, L ;
Roca-Moreno, E ;
Carmona-Galán, R ;
Jiménez-Garrido, F ;
Domínguez-Castro, R ;
Meana, SE .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (05) :851-863
[28]  
Rodriguez-Vazquez A, 2008, EYE RIS CMOS VISION
[29]  
Santti T., 2014, 14 INT WORKSH CELL N
[30]  
Säntti T, 2015, IEEE INT SYMP CIRC S, P1985, DOI 10.1109/ISCAS.2015.7169064