Exploratory, Regression, and Neural Network Analysis of the Stability of Cation Coronates in Selected Pure Solvents

被引:2
作者
Bondarev, N. V. [1 ]
机构
[1] Kharkov Natl Univ, UA-61022 Kharkiv, Ukraine
关键词
crown ethers; complexation constant; exploratory analysis; multiple linear regression; neural networks; modeling; prediction; CROWN-ETHER COMPLEXES; PREDICTION; CLASSIFICATION; 18-CROWN-6; POTASSIUM; SODIUM; SCIENCE; DESIGN; SYSTEM; IONS;
D O I
10.1134/S107036322010014X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploratory, regression, and neural network analysis of the stability constants of crown ether [12C4, 16C5, (CH3)216C5, DB21C7, DB24C8, DCH24C8, DB30C10] 1 : 1 complexes with alkaline (Li+, Na+, K+, Cs+, Rb+), alkaline-earth (Ca2+, Sr2+, Ba2+), and heavy (Ag+, Tl+, Co2+, Cu2+, Pb2+) metals and NH4+ in water and organic solvents (methanol, acetonitrile, acetone, N,N-dimethylformamide, nitrobenzene, nitromethane, 1,2-dichloroethane, propylene carbonate) at 298.15 K obtained via conductometry has been performed. Factor, cluster, discriminant, canonical, decision tree, regression, and neural network models of clustering, approximation, and prediction of thermodynamic constants of the complexation depending on the properties of the ligand, the cation, and the solvent have been developed. The trained MLP 7-5-5 Multilayer Perceptron Cluster has completely confirmed the k-means clustering. Independent data on the stability constants of coronates have demonstrated the predictive capacity of the trained perceptron-approximator MLP 7-7-1.
引用
收藏
页码:1906 / 1920
页数:15
相关论文
共 78 条
  • [61] Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests
    Meyer, Jesse G.
    Liu, Shengchao
    Miller, Ian J.
    Coon, Joshua J.
    Gitter, Anthony
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4438 - 4449
  • [62] Neural Networks Are Promising Tools for the Prediction of the Viscosity of Unsaturated Polyester Resins
    Molina, Julien
    Laroche, Aurelie
    Richard, Jean-Victor
    Schuller, Anne-Sophie
    Rolando, Christian
    [J]. FRONTIERS IN CHEMISTRY, 2019, 7
  • [63] Nasledov A.D., 2013, IBM SPSS Statistics 20 i AMOS: professional'nyi statisticheskii analiz dannykh IBM SPSS Statistics 20 and AMOS: Professional Statistical Data Analysis
  • [64] Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
  • [65] MOLECULAR DESIGN OF CROWN ETHERS .1. EFFECTS OF METHYLENE CHAIN-LENGTH - 15-CROWN-5 TO 17-CROWN-5 AND 18-CROWN-6 TO 22-CROWN-6
    OUCHI, M
    INOUE, Y
    KANZAKI, T
    HAKUSHI, T
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 1984, 49 (08) : 1408 - 1412
  • [66] Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists
    Parastar, Hadi
    Tauler, Roma
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (44) : e201801134
  • [67] Exploratory data analysis in the study of 7Be present in atmospheric aerosols
    Pinero Garcia, F.
    Ferro Garcia, M. A.
    Drozdzak, J.
    Ruiz-Samblas, C.
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2012, 19 (08) : 3317 - 3326
  • [68] Cationic Noncovalent Interactions: Energetics and Periodic Trends
    Rodgers, M. T.
    Armentrout, P. B.
    [J]. CHEMICAL REVIEWS, 2016, 116 (09) : 5642 - 5687
  • [69] Recent advances and applications of machine learning in solid-state materials science
    Schmidt, Jonathan
    Marques, Mario R. G.
    Botti, Silvana
    Marques, Miguel A. L.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [70] Quantum-chemical insights from deep tensor neural networks
    Schuett, Kristof T.
    Arbabzadah, Farhad
    Chmiela, Stefan
    Mueller, Klaus R.
    Tkatchenko, Alexandre
    [J]. NATURE COMMUNICATIONS, 2017, 8