TURBot: A System or Robot-Assisted Transurethral Bladder Tumor Resection

被引:21
作者
Sarli, Nima [1 ]
Del Giudice, Giuseppe [1 ]
De, Smita [2 ]
Dietrich, Mary S. [3 ,4 ]
Herrell, S. Duke [2 ]
Simaan, Nabil [1 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Dept Urol Surg, Med Ctr, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Sch Med, Sch Nursing, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Sch Med, Dept Biostat, Nashville, TN 37232 USA
关键词
Continuum robot; redundancy resolution; transurethral resection of bladder tumors (TURBT); TELEROBOTIC SYSTEM; SURGERY; CANCER; DESIGN; PLATFORM;
D O I
10.1109/TMECH.2019.2918137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Staging and treatment of nonmuscle-invasive bladder tumors using transurethral resection of bladder tumors (TURBT) is challenging due to limitations in intravesicular tool dexterity, visualization and risk of bladder wall perforation. Currently, TURBT is achieved via a rigid resectoscope. This dexterity limitation is exacerbated when tumors are located in the bladder neck region. To address these limitations, an endoscopic robotic system called TURBot was developed. The paper presents the design considerations, modeling, and control challenges that were addressed to enable the first robot-assisted in vivo TURBT. The design and control of a slave robot comprised of a multisegment continuum robot capable of deploying a micro snake-like continuum robot for control of an ablation laser, a grasper, and a fiberscope is presented. A strategy for constrained telemanipulation is presented based on the redundancy resolution with varying task dimension that is commensurate with the level of constraint experienced by the robot during transurethral deployment. In addition to evaluation in animals, TURBot resection is compared against manual resection in a mockup user study using a human bladder phantom. The contributions of this paper present key steps that pave the way toward successful clinical robot-assisted TURBT.
引用
收藏
页码:1452 / 1463
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 2018, CANC FACTS FIG 2018
[2]   EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016 [J].
Babjuk, Marko ;
Boehle, Andreas ;
Burger, Maximilian ;
Capoun, Otakar ;
Cohen, Daniel ;
Comperat, Eva M. ;
Hernandez, Virginia ;
Kaasinen, Eero ;
Palou, Joan ;
Roupret, Morgan ;
van Rhijn, Bas W. G. ;
Shariat, Shahrokh F. ;
Soukup, Viktor ;
Sylvester, Richard J. ;
Zigeuner, Richard .
EUROPEAN UROLOGY, 2017, 71 (03) :447-461
[3]  
Bajo A, 2013, IEEE INT CONF ROBOT, P5837, DOI 10.1109/ICRA.2013.6631417
[4]   Controlling the Trajectory of a Flexible Ultrathin Endoscope for Fully Automated Bladder Surveillance [J].
Burkhardt, Matthew R. ;
Soper, Timothy D. ;
Yoon, Woon Jong ;
Seibel, Eric J. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (01) :366-373
[5]  
CHAN TF, 1995, IEEE T ROBOTIC AUTOM, V11, P286, DOI 10.1109/70.370511
[6]   Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline [J].
Chang, Sam S. ;
Boorjian, Stephen A. ;
Chou, Roger ;
Clark, Peter E. ;
Daneshmand, Siamak ;
Konety, Badrinath R. ;
Pruthi, Raj ;
Quale, Diane Z. ;
Ritch, Chad R. ;
Seigne, John D. ;
Skinner, Eila Curlee ;
Smith, Norm D. ;
McKiernan, James M. .
JOURNAL OF UROLOGY, 2016, 196 (04) :1021-1029
[7]  
Coemert S, 2017, IEEE INT C INT ROBOT, P1670, DOI 10.1109/IROS.2017.8205978
[8]  
Davies B L, 1991, Proc Inst Mech Eng H, V205, P35, DOI 10.1243/PIME_PROC_1991_205_259_02
[9]  
Del Giudice G, 2016, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 5A
[10]   Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery [J].
Ding, Jienan ;
Xu, Kai ;
Goldman, Roger ;
Allen, Peter ;
Fowler, Dennis ;
Simaan, Nabil .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :1053-1058