Spatial search by continuous-time quantum walks on crystal lattices

被引:39
作者
Childs, Andrew M. [1 ,2 ]
Ge, Yimin [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Continuous time systems;
D O I
10.1103/PhysRevA.89.052337
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the problem of searching a general d-dimensional lattice of N vertices for a single marked item using a continuous-time quantum walk. We demand locality, but allow the walk to vary periodically on a small scale. By constructing lattice Hamiltonians exhibiting Dirac points in their dispersion relations and exploiting the linear behavior near a Dirac point, we develop algorithms that solve the problem in a time of O(root N) for d > 2 and O(root N logN) in d = 2. In particular, we show that such algorithms exist even for hypercubic lattices in any dimension. Unlike previous continuous-time quantum walk algorithms on hypercubic lattices in low dimensions, our approach does not use external memory.
引用
收藏
页数:11
相关论文
共 16 条
[11]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[12]   Quantum random walks do not need a coin toss [J].
Patel, A ;
Raghunathan, KS ;
Rungta, P .
PHYSICAL REVIEW A, 2005, 71 (03)
[13]   Search on a hypercubic lattice using a quantum random walk. I. d > 2 [J].
Patel, Apoorva ;
Rahaman, Md. Aminoor .
PHYSICAL REVIEW A, 2010, 82 (03)
[14]   Search on a hypercubic lattice using a quantum random walk. II. d = 2 [J].
Patel, Apoorva ;
Raghunathan, K. S. ;
Rahaman, Md. Aminoor .
PHYSICAL REVIEW A, 2010, 82 (03)
[15]   LATTICE FERMIONS [J].
SUSSKIND, L .
PHYSICAL REVIEW D, 1977, 16 (10) :3031-3039
[16]   Faster quantum-walk algorithm for the two-dimensional spatial search [J].
Tulsi, Avatar .
PHYSICAL REVIEW A, 2008, 78 (01)