Spatial search by continuous-time quantum walks on crystal lattices

被引:39
作者
Childs, Andrew M. [1 ,2 ]
Ge, Yimin [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Continuous time systems;
D O I
10.1103/PhysRevA.89.052337
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the problem of searching a general d-dimensional lattice of N vertices for a single marked item using a continuous-time quantum walk. We demand locality, but allow the walk to vary periodically on a small scale. By constructing lattice Hamiltonians exhibiting Dirac points in their dispersion relations and exploiting the linear behavior near a Dirac point, we develop algorithms that solve the problem in a time of O(root N) for d > 2 and O(root N logN) in d = 2. In particular, we show that such algorithms exist even for hypercubic lattices in any dimension. Unlike previous continuous-time quantum walk algorithms on hypercubic lattices in low dimensions, our approach does not use external memory.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
Aaronson S., 2005, Theor. Comput., V1, P47
[2]  
Ambainis A., 2005, P 16 ANN ACM SIAM S, P1099
[3]  
[Anonymous], AMS CONT MATH SERIES
[4]  
[Anonymous], ARXIV13120172
[5]  
[Anonymous], ARXIV13034127
[6]  
Benioff P, 2002, AMS CONT MATH SERIES
[7]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[8]   Spatial search and the Dirac equation [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (04) :042312-1
[9]   Spatial search by quantum walk [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (02) :022314-1
[10]   Quantum Search on Graphene Lattices [J].
Foulger, Iain ;
Gnutzmann, Sven ;
Tanner, Gregor .
PHYSICAL REVIEW LETTERS, 2014, 112 (07)