High-rate girth-eight low-density parity-check codes on rectangular integer lattices

被引:44
作者
Vasic, B [1 ]
Pedagani, K
Ivkovic, M
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[2] Inst Mat Estat & Comp Cient, BR-13083970 Campinas, SP, Brazil
基金
美国国家科学基金会;
关键词
combinatorial designs; error-control coding; finite geometries; graph girth; iterative decoding; low-density parity-check (LDPC) codes;
D O I
10.1109/TCOMM.2004.833037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter introduces a combinatorial construction of girth-eight high-rate low-density parity-check codes based on integer lattices. The parity-check matrix of a code is defined as a point-line incidence matrix of a 1-configuration based on a rectangular integer lattice, and the girth-eight property is achieved by a judicious selection of sets of parallel lines included in a configuration. A class of codes with a wide range of lengths and column weights is obtained. The resulting matrix of parity checks is an array of circulant matrices.
引用
收藏
页码:1248 / 1252
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 1989, INTRO ALGORITHMS
[2]  
Batten L. M., 1997, Combinatorics of finite geometries, V2nd
[3]  
BEEZER RA, IN PRESS J COMBINATO
[4]  
FAN JL, 2000, P 2 INT S TURB COD R, P543
[5]   Codes on graphs: Normal realizations [J].
Forney, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :520-548
[6]  
Gallager RG, 1963, LOW DENSITY PARITY C
[7]  
KIM JL, 2002, P 40 ALL C COMM CONT, P1024
[9]   Factor graphs and the sum-product algorithm [J].
Kschischang, FR ;
Frey, BJ ;
Loeliger, HA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :498-519
[10]   Iterative decoding of compound codes by probability propagation in graphical models [J].
Kschischang, FR ;
Frey, BJ .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (02) :219-230