Affine hypersurfaces with self congruent center map

被引:1
作者
Li, Cece [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
Affine hypersurfaces; Center map; Equiaffine support function; Warped product;
D O I
10.1016/j.jmaa.2015.10.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study locally strictly convex affine hypersurfaces for which the center map is centroaffine congruent with the original hypersurface. By the equiaffine support function rho, we show that the hypersurface is locally isometric to a warped product R x (root vertical bar rho vertical bar) N, where the gradient direction of rho is along R. As a main result, we complete the classification when grad rho is the eigenvector of affine shape operator, which shows how to explicitly construct such hypersurfaces starting from one (or two) low dimensional affine hypersphere(s). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 16 条
  • [1] Characterization of the Generalized Calabi Composition of Affine Hyperspheres
    Antic, Miroslava
    Hu, Ze Jun
    Li, Ce Ce
    Vrancken, Luc
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (10) : 1531 - 1554
  • [2] DECOMPOSABLE AFFINE HYPERSURFACES
    Antic, Miroslava
    Dillen, Franki
    Schoels, Kristof
    Vrancken, Luc
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (01) : 93 - 103
  • [3] Calabi Cal72 Eugenio, 1972, S MATH, VX, P19
  • [4] FOCAL POINTS AND SUPPORT FUNCTIONS IN AFFINE DIFFERENTIAL GEOMETRY
    CECIL, TE
    [J]. GEOMETRIAE DEDICATA, 1994, 50 (03) : 291 - 300
  • [5] CALABI-TYPE COMPOSITION OF AFFINE SPHERES
    DILLEN, F
    VRANCKEN, L
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (04) : 303 - 328
  • [6] Furuhata H., 2006, RESULTS MATH, V49, P201
  • [7] Centroaffine surfaces with degenerate center map
    Hu, Na
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 65 : 45 - 54
  • [8] Katou M., 2006, INTERDISCIP INFORM S, V12, P53
  • [9] Li A. M., 1993, Global Affine Differential Geometry of Hypersurfaces
  • [10] Li A-M., 1991, RESULTS MATH, V20, P660