Comparative Analysis of Single-Cell RNA Sequencing Methods

被引:988
作者
Ziegenhain, Christoph [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ]
Reinius, Bjorn [2 ,3 ]
Guillaumet-Adkins, Amy [4 ,5 ]
Smets, Martha [6 ,7 ]
Leonhardt, Heinrich [6 ,7 ]
Heyn, Holger [4 ,5 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Anthropol & Human Genom, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Ludwig Inst Canc Res, Box 240, S-17177 Stockholm, Sweden
[3] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[4] BIST, Ctr Genom Regulat CRG, CNAG CRG, Barcelona 08028, Spain
[5] UPF, Barcelona 08002, Spain
[6] Ludwig Maximilians Univ Munchen, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[7] Ludwig Maximilians Univ Munchen, CIPSM, Grosshaderner Str 2, D-82152 Martinsried, Germany
关键词
DIFFERENTIAL EXPRESSION ANALYSES; GENE-EXPRESSION; LIBRARY PREPARATION; SEQ; NOISE;
D O I
10.1016/j.molcel.2017.01.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
引用
收藏
页码:631 / +
页数:17
相关论文
共 49 条
  • [31] Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing
    Mora-Castilla, Sergio
    Cuong To
    Vaezeslami, Soheila
    Morey, Robert
    Srinivasan, Srimeenakshi
    Chousal, Jennifer N.
    Cook-Andersen, Heidi
    Jenkins, Joby
    Laurent, Louise C.
    [J]. JALA, 2016, 21 (04): : 557 - 567
  • [32] Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription
    Nam, DK
    Lee, S
    Zhou, GL
    Cao, XH
    Wang, C
    Clark, T
    Chen, JJ
    Rowley, JD
    Wang, SM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) : 6152 - 6156
  • [33] The impact of amplification on differential expression analyses by RNA-seq
    Parekh, Swati
    Ziegenhain, Christoph
    Vieth, Beate
    Enard, Wolfgang
    Hellmann, Ines
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [34] Petropoulos S, 2016, CELL, V165, P1012, DOI [10.1016/j.cell.2016.03.023, 10.1016/j.cell.2016.08.009]
  • [35] Tn5 transposase and tagmentation procedures for massively scaled sequencing projects
    Picelli, Simone
    Bjorklund, Asa K.
    Reinius, Bjorn
    Sagasser, Sven
    Winberg, Gosta
    Sandberg, Rickard
    [J]. GENOME RESEARCH, 2014, 24 (12) : 2033 - 2040
  • [36] Full-length RNA-seq from single cells using Smart-seq2
    Picelli, Simone
    Faridani, Omid R.
    Bjorklund, Asa K.
    Winberg, Gosta
    Sagasser, Sven
    Sandberg, Rickard
    [J]. NATURE PROTOCOLS, 2014, 9 (01) : 171 - 181
  • [37] Picelli S, 2013, NAT METHODS, V10, P1096, DOI [10.1038/NMETH.2639, 10.1038/nmeth.2639]
  • [38] Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq
    Reinius, Bjorn
    Mold, Jeff E.
    Ramskold, Daniel
    Deng, Qiaolin
    Johnsson, Per
    Michaelsson, Jakob
    Frisen, Jonas
    Sandberg, Rickard
    [J]. NATURE GENETICS, 2016, 48 (11) : 1430 - 1435
  • [39] deML: robust demultiplexing of Illumina sequences using a likelihood-based approach
    Renaud, Gabriel
    Stenzel, Udo
    Maricic, Tomislav
    Wiebe, Victor
    Kelso, Janet
    [J]. BIOINFORMATICS, 2015, 31 (05) : 770 - 772
  • [40] Normalization of RNA-seq data using factor analysis of control genes or samples
    Risso, Davide
    Ngai, John
    Speed, Terence P.
    Dudoit, Sandrine
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (09) : 896 - 902