Comparative Analysis of Single-Cell RNA Sequencing Methods

被引:1035
作者
Ziegenhain, Christoph [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ]
Reinius, Bjorn [2 ,3 ]
Guillaumet-Adkins, Amy [4 ,5 ]
Smets, Martha [6 ,7 ]
Leonhardt, Heinrich [6 ,7 ]
Heyn, Holger [4 ,5 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Anthropol & Human Genom, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Ludwig Inst Canc Res, Box 240, S-17177 Stockholm, Sweden
[3] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[4] BIST, Ctr Genom Regulat CRG, CNAG CRG, Barcelona 08028, Spain
[5] UPF, Barcelona 08002, Spain
[6] Ludwig Maximilians Univ Munchen, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[7] Ludwig Maximilians Univ Munchen, CIPSM, Grosshaderner Str 2, D-82152 Martinsried, Germany
关键词
DIFFERENTIAL EXPRESSION ANALYSES; GENE-EXPRESSION; LIBRARY PREPARATION; SEQ; NOISE;
D O I
10.1016/j.molcel.2017.01.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
引用
收藏
页码:631 / +
页数:17
相关论文
共 49 条
[31]   Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing [J].
Mora-Castilla, Sergio ;
Cuong To ;
Vaezeslami, Soheila ;
Morey, Robert ;
Srinivasan, Srimeenakshi ;
Chousal, Jennifer N. ;
Cook-Andersen, Heidi ;
Jenkins, Joby ;
Laurent, Louise C. .
JALA, 2016, 21 (04) :557-567
[32]   Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription [J].
Nam, DK ;
Lee, S ;
Zhou, GL ;
Cao, XH ;
Wang, C ;
Clark, T ;
Chen, JJ ;
Rowley, JD ;
Wang, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6152-6156
[33]   The impact of amplification on differential expression analyses by RNA-seq [J].
Parekh, Swati ;
Ziegenhain, Christoph ;
Vieth, Beate ;
Enard, Wolfgang ;
Hellmann, Ines .
SCIENTIFIC REPORTS, 2016, 6
[34]  
Petropoulos S, 2016, CELL, V165, P1012, DOI [10.1016/j.cell.2016.03.023, 10.1016/j.cell.2016.08.009]
[35]   Tn5 transposase and tagmentation procedures for massively scaled sequencing projects [J].
Picelli, Simone ;
Bjorklund, Asa K. ;
Reinius, Bjorn ;
Sagasser, Sven ;
Winberg, Gosta ;
Sandberg, Rickard .
GENOME RESEARCH, 2014, 24 (12) :2033-2040
[36]   Full-length RNA-seq from single cells using Smart-seq2 [J].
Picelli, Simone ;
Faridani, Omid R. ;
Bjorklund, Asa K. ;
Winberg, Gosta ;
Sagasser, Sven ;
Sandberg, Rickard .
NATURE PROTOCOLS, 2014, 9 (01) :171-181
[37]  
Picelli S, 2013, NAT METHODS, V10, P1096, DOI [10.1038/NMETH.2639, 10.1038/nmeth.2639]
[38]   Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq [J].
Reinius, Bjorn ;
Mold, Jeff E. ;
Ramskold, Daniel ;
Deng, Qiaolin ;
Johnsson, Per ;
Michaelsson, Jakob ;
Frisen, Jonas ;
Sandberg, Rickard .
NATURE GENETICS, 2016, 48 (11) :1430-1435
[39]   deML: robust demultiplexing of Illumina sequences using a likelihood-based approach [J].
Renaud, Gabriel ;
Stenzel, Udo ;
Maricic, Tomislav ;
Wiebe, Victor ;
Kelso, Janet .
BIOINFORMATICS, 2015, 31 (05) :770-772
[40]   Normalization of RNA-seq data using factor analysis of control genes or samples [J].
Risso, Davide ;
Ngai, John ;
Speed, Terence P. ;
Dudoit, Sandrine .
NATURE BIOTECHNOLOGY, 2014, 32 (09) :896-902