Comparative Analysis of Single-Cell RNA Sequencing Methods

被引:988
作者
Ziegenhain, Christoph [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ]
Reinius, Bjorn [2 ,3 ]
Guillaumet-Adkins, Amy [4 ,5 ]
Smets, Martha [6 ,7 ]
Leonhardt, Heinrich [6 ,7 ]
Heyn, Holger [4 ,5 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Anthropol & Human Genom, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Ludwig Inst Canc Res, Box 240, S-17177 Stockholm, Sweden
[3] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[4] BIST, Ctr Genom Regulat CRG, CNAG CRG, Barcelona 08028, Spain
[5] UPF, Barcelona 08002, Spain
[6] Ludwig Maximilians Univ Munchen, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[7] Ludwig Maximilians Univ Munchen, CIPSM, Grosshaderner Str 2, D-82152 Martinsried, Germany
关键词
DIFFERENTIAL EXPRESSION ANALYSES; GENE-EXPRESSION; LIBRARY PREPARATION; SEQ; NOISE;
D O I
10.1016/j.molcel.2017.01.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
引用
收藏
页码:631 / +
页数:17
相关论文
共 49 条
  • [11] CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification
    Hashimshony, Tamar
    Wagner, Florian
    Sher, Noa
    Yanai, Itai
    [J]. CELL REPORTS, 2012, 2 (03): : 666 - 673
  • [12] Hicks S. C., 2015, BIORXIV
  • [13] Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
  • [14] Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types
    Jaitin, Diego Adhemar
    Kenigsberg, Ephraim
    Keren-Shaul, Hadas
    Elefant, Naama
    Paul, Franziska
    Zaretsky, Irina
    Mildner, Alexander
    Cohen, Nadav
    Jung, Steffen
    Tanay, Amos
    Amit, Ido
    [J]. SCIENCE, 2014, 343 (6172) : 776 - 779
  • [15] Synthetic spike-in standards for RNA-seq experiments
    Jiang, Lichun
    Schlesinger, Felix
    Davis, Carrie A.
    Zhang, Yu
    Li, Renhua
    Salit, Marc
    Gingeras, Thomas R.
    Oliver, Brian
    [J]. GENOME RESEARCH, 2011, 21 (09) : 1543 - 1551
  • [16] Kalinka A.T., 2013, ARXIV13050717
  • [17] Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/nmeth.2967, 10.1038/NMETH.2967]
  • [18] Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Illicic, Tomislav
    Teichmann, Sarah A.
    Marioni, John C.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [19] Kivioja T, 2012, NAT METHODS, V9, P72, DOI [10.1038/NMETH.1778, 10.1038/nmeth.1778]
  • [20] Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells
    Klein, Allon M.
    Mazutis, Linas
    Akartuna, Ilke
    Tallapragada, Naren
    Veres, Adrian
    Li, Victor
    Peshkin, Leonid
    Weitz, David A.
    Kirschner, Marc W.
    [J]. CELL, 2015, 161 (05) : 1187 - 1201