Comparative Analysis of Single-Cell RNA Sequencing Methods

被引:1035
作者
Ziegenhain, Christoph [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ]
Reinius, Bjorn [2 ,3 ]
Guillaumet-Adkins, Amy [4 ,5 ]
Smets, Martha [6 ,7 ]
Leonhardt, Heinrich [6 ,7 ]
Heyn, Holger [4 ,5 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Anthropol & Human Genom, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Ludwig Inst Canc Res, Box 240, S-17177 Stockholm, Sweden
[3] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[4] BIST, Ctr Genom Regulat CRG, CNAG CRG, Barcelona 08028, Spain
[5] UPF, Barcelona 08002, Spain
[6] Ludwig Maximilians Univ Munchen, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[7] Ludwig Maximilians Univ Munchen, CIPSM, Grosshaderner Str 2, D-82152 Martinsried, Germany
关键词
DIFFERENTIAL EXPRESSION ANALYSES; GENE-EXPRESSION; LIBRARY PREPARATION; SEQ; NOISE;
D O I
10.1016/j.molcel.2017.01.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
引用
收藏
页码:631 / +
页数:17
相关论文
共 49 条
[1]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[2]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[3]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[4]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[5]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[6]   Polyester: simulating RNA-seq datasets with differential transcript expression [J].
Frazee, Alyssa C. ;
Jaffe, Andrew E. ;
Langmead, Ben ;
Leek, Jeffrey T. .
BIOINFORMATICS, 2015, 31 (17) :2778-2784
[7]   Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq [J].
Gokce, Ozgun ;
Stanley, Geoffrey M. ;
Treutlein, Barbara ;
Neff, Norma F. ;
Camp, J. Gray ;
Malenka, Robert C. ;
Rothwell, Patrick E. ;
Fuccillo, Marc V. ;
Sudhof, Thomas C. ;
Quake, Stephen R. .
CELL REPORTS, 2016, 16 (04) :1126-1137
[8]   Design and Analysis of Single-Cell Sequencing Experiments [J].
Gruen, Dominic ;
van Oudenaarden, Alexander .
CELL, 2015, 163 (04) :799-810
[9]  
Grün D, 2014, NAT METHODS, V11, P637, DOI [10.1038/NMETH.2930, 10.1038/nmeth.2930]
[10]   CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq [J].
Hashimshony, Tamar ;
Senderovich, Naftalie ;
Avital, Gal ;
Klochendler, Agnes ;
de Leeuw, Yaron ;
Anavy, Leon ;
Gennert, Dave ;
Li, Shuqiang ;
Livak, Kenneth J. ;
Rozenblatt-Rosen, Orit ;
Dor, Yuval ;
Regev, Aviv ;
Yanai, Itai .
GENOME BIOLOGY, 2016, 17