Comparative Analysis of Single-Cell RNA Sequencing Methods

被引:988
作者
Ziegenhain, Christoph [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ]
Reinius, Bjorn [2 ,3 ]
Guillaumet-Adkins, Amy [4 ,5 ]
Smets, Martha [6 ,7 ]
Leonhardt, Heinrich [6 ,7 ]
Heyn, Holger [4 ,5 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Anthropol & Human Genom, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Ludwig Inst Canc Res, Box 240, S-17177 Stockholm, Sweden
[3] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[4] BIST, Ctr Genom Regulat CRG, CNAG CRG, Barcelona 08028, Spain
[5] UPF, Barcelona 08002, Spain
[6] Ludwig Maximilians Univ Munchen, Dept Biol 2, Grosshaderner Str 2, D-82152 Martinsried, Germany
[7] Ludwig Maximilians Univ Munchen, CIPSM, Grosshaderner Str 2, D-82152 Martinsried, Germany
关键词
DIFFERENTIAL EXPRESSION ANALYSES; GENE-EXPRESSION; LIBRARY PREPARATION; SEQ; NOISE;
D O I
10.1016/j.molcel.2017.01.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
引用
收藏
页码:631 / +
页数:17
相关论文
共 49 条
  • [1] Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
  • [2] Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells
    Deng, Qiaolin
    Ramskold, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    [J]. SCIENCE, 2014, 343 (6167) : 193 - 196
  • [3] STAR: ultrafast universal RNA-seq aligner
    Dobin, Alexander
    Davis, Carrie A.
    Schlesinger, Felix
    Drenkow, Jorg
    Zaleski, Chris
    Jha, Sonali
    Batut, Philippe
    Chaisson, Mark
    Gingeras, Thomas R.
    [J]. BIOINFORMATICS, 2013, 29 (01) : 15 - 21
  • [4] An integrated encyclopedia of DNA elements in the human genome
    Dunham, Ian
    Kundaje, Anshul
    Aldred, Shelley F.
    Collins, Patrick J.
    Davis, CarrieA.
    Doyle, Francis
    Epstein, Charles B.
    Frietze, Seth
    Harrow, Jennifer
    Kaul, Rajinder
    Khatun, Jainab
    Lajoie, Bryan R.
    Landt, Stephen G.
    Lee, Bum-Kyu
    Pauli, Florencia
    Rosenbloom, Kate R.
    Sabo, Peter
    Safi, Alexias
    Sanyal, Amartya
    Shoresh, Noam
    Simon, Jeremy M.
    Song, Lingyun
    Trinklein, Nathan D.
    Altshuler, Robert C.
    Birney, Ewan
    Brown, James B.
    Cheng, Chao
    Djebali, Sarah
    Dong, Xianjun
    Dunham, Ian
    Ernst, Jason
    Furey, Terrence S.
    Gerstein, Mark
    Giardine, Belinda
    Greven, Melissa
    Hardison, Ross C.
    Harris, Robert S.
    Herrero, Javier
    Hoffman, Michael M.
    Iyer, Sowmya
    Kellis, Manolis
    Khatun, Jainab
    Kheradpour, Pouya
    Kundaje, Anshul
    Lassmann, Timo
    Li, Qunhua
    Lin, Xinying
    Marinov, Georgi K.
    Merkel, Angelika
    Mortazavi, Ali
    [J]. NATURE, 2012, 489 (7414) : 57 - 74
  • [5] MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    Finak, Greg
    McDavid, Andrew
    Yajima, Masanao
    Deng, Jingyuan
    Gersuk, Vivian
    Shalek, Alex K.
    Slichter, Chloe K.
    Miller, Hannah W.
    McElrath, M. Juliana
    Prlic, Martin
    Linsley, Peter S.
    Gottardo, Raphael
    [J]. GENOME BIOLOGY, 2015, 16
  • [6] Polyester: simulating RNA-seq datasets with differential transcript expression
    Frazee, Alyssa C.
    Jaffe, Andrew E.
    Langmead, Ben
    Leek, Jeffrey T.
    [J]. BIOINFORMATICS, 2015, 31 (17) : 2778 - 2784
  • [7] Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq
    Gokce, Ozgun
    Stanley, Geoffrey M.
    Treutlein, Barbara
    Neff, Norma F.
    Camp, J. Gray
    Malenka, Robert C.
    Rothwell, Patrick E.
    Fuccillo, Marc V.
    Sudhof, Thomas C.
    Quake, Stephen R.
    [J]. CELL REPORTS, 2016, 16 (04): : 1126 - 1137
  • [8] Design and Analysis of Single-Cell Sequencing Experiments
    Gruen, Dominic
    van Oudenaarden, Alexander
    [J]. CELL, 2015, 163 (04) : 799 - 810
  • [9] Grün D, 2014, NAT METHODS, V11, P637, DOI [10.1038/NMETH.2930, 10.1038/nmeth.2930]
  • [10] CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
    Hashimshony, Tamar
    Senderovich, Naftalie
    Avital, Gal
    Klochendler, Agnes
    de Leeuw, Yaron
    Anavy, Leon
    Gennert, Dave
    Li, Shuqiang
    Livak, Kenneth J.
    Rozenblatt-Rosen, Orit
    Dor, Yuval
    Regev, Aviv
    Yanai, Itai
    [J]. GENOME BIOLOGY, 2016, 17