Data mining rules using multi-objective evolutionary algorithms

被引:0
|
作者
de la Iglesia, B [1 ]
Philpott, MS [1 ]
Bagnall, AJ [1 ]
Rayward-Smith, VJ [1 ]
机构
[1] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England
来源
CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In data mining, nugget discovery is the discovery of interesting classification rules that apply to a target class. In previous research, heuristic methods (Genetic algorithms, Simulated Annealing and Tabu Search) have been used to optimise a single measure of interest. This paper proposes the use of multi-objective optimisation evolutionary algorithms to allow the user to interactively select a number of interest measures and deliver the best nuggets (an approximation to the Pareto-optimal set) according to those measures. Initial experiments are conducted on a number of databases, using an implementation of the Fast Elitist Non-Dominated Sorting Genetic Algorithm (NSGA), and two well known measures of interest. Comparisons with the results obtained using modern heuristic methods are presented. Results indicate the potential of multi-objective evolutionary algorithms for the task of nugget discovery.
引用
收藏
页码:1552 / 1559
页数:8
相关论文
共 50 条
  • [41] A data mining approach to evolutionary optimisation of noisy multi-objective problems
    Chia, J. Y.
    Goh, C. K.
    Shim, V. A.
    Tan, K. C.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1217 - 1247
  • [42] Decentralized optimum power flow using evolutionary multi-objective evolutionary algorithms
    De Andrade Amorim, Elizete
    Romero, Rubén
    Mantovani, José R. S.
    Controle y Automacao, 2009, 20 (02): : 217 - 232
  • [43] Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets
    L. Poladian
    L.S. Jermiin
    Soft Computing, 2006, 10 : 359 - 368
  • [44] Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets
    Poladian, L
    Jermiin, LS
    SOFT COMPUTING, 2006, 10 (04) : 359 - 368
  • [45] Analysis of evolutionary multi-objective algorithms for data center electrical systems
    Monte Sousa, Francisco
    Callou, Gustavo
    COMPUTING, 2025, 107 (02)
  • [46] An Adaptive Data Structure for Evolutionary Multi-Objective Algorithms with Unbounded Archives
    Yuen, Joseph
    Gao, Sophia
    Wagner, Markus
    Neumann, Frank
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [47] Multi-objective parallel robotic dispensing planogram optimisation using association rule mining and evolutionary algorithms
    Wang, Haifeng
    Dauod, Husam
    Khader, Nourma
    Yoon, Sang Won
    Srihari, Krishnaswami
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2018, 31 (08) : 799 - 814
  • [48] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [49] Fuzzy Classification with Multi-objective Evolutionary Algorithms
    Jimenez, Fernando
    Sanchez, Gracia
    Sanchez, Jose F.
    Alcaraz, Jose M.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 730 - 738
  • [50] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758