THE PRIME IDEALS AND SIMPLE MODULES OF THE UNIVERSAL ENVELOPING ALGEBRA U(b x V2)

被引:2
作者
Bavula, Volodymyr V. [1 ]
Lu, Tao [2 ]
机构
[1] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
关键词
D O I
10.1017/S0017089519000302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b be the Borel subalgebra of the Lie algebra sl(2) and V-2 be the simple two-dimensional sl(2)-module. For the universal enveloping algebra A:= U(b x V-2) of the semi-direct product b x V-2 of Lie algebras, the prime, primitive and maximal spectra are classified. The sets of completely prime ideals of A are described. The simple unfaithful A-modules are classified and an explicit description of all prime factor algebras of A is given. The following classes of simple U(b x V-2)-modules are classified: the Whittaker modules, the K[X]-torsion modules and the K[E]-torsion modules.
引用
收藏
页码:S77 / S98
页数:22
相关论文
共 17 条
[12]   On non-local representations of the ageing algebra [J].
Henkel, Malte ;
Stoimenov, Stoimen .
NUCLEAR PHYSICS B, 2011, 847 (03) :612-627
[13]   Classification of Simple Weight Modules Over the 1-Spatial Ageing Algebra [J].
Lu, Rencai ;
Mazorchuk, Volodymyr ;
Zhao, Kaiming .
ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (02) :381-395
[14]  
McConnell J. C., 2001, Graduate Studies in Mathematics, V30, DOI DOI 10.1090/GSM/030
[15]   DIFFERENTIAL OPERATOR RINGS WHOSE PRIME FACTORS HAVE BOUNDED GOLDIE-DIMENSION [J].
SIGURDSSON, G .
ARCHIV DER MATHEMATIK, 1984, 42 (04) :348-353
[16]  
Stoimenov S., 2013, LIE THEORY ITS APPL, V36, P369
[17]   Non-local representations of the ageing algebra in higher dimensions [J].
Stoimenov, Stoimen ;
Henkel, Malte .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (24)