Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

被引:38
|
作者
Crovetto, Andrea [1 ]
Palsgaard, Mattias L. N. [1 ,2 ]
Gunst, Tue [1 ]
Markussen, Troels [2 ]
Stokbro, Kurt [2 ]
Brandbyge, Mads [1 ]
Hansen, Ole [3 ]
机构
[1] Tech Univ Denmark, DTU Nanotech, DK-2800 Lyngby, Denmark
[2] QuantumWise A S, DK-2100 Copenhagen, Denmark
[3] Tech Univ Denmark, Villum Ctr Sci Sustainable Fuels & Chem, V SUSTAIN, DK-2800 Lyngby, Denmark
关键词
S/SE RATIO; RECOMBINATION;
D O I
10.1063/1.4976830
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4 valence band into the forbidden gap. Those surface states are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of Zn to passivate those surface states. Focusing future research on Zn-based buffers is expected to significantly improve the open circuit voltage and efficiency of pure-sulfide Cu2ZnSnS4 solar cells. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Tuning Band Alignment at Grain Boundaries for Efficiency Enhancement in Cu2ZnSnS4 Solar Cells
    Li, Wenjie
    Li, Weimin
    Chen, Guo
    Wu, Liyun
    Zhang, Jun
    Chen, Ming
    Zhong, Guohua
    Zhu, Junyi
    Feng, Ye
    Zeng, Hao
    Yang, Chunlei
    ACS NANO, 2023, 17 (16) : 15742 - 15750
  • [32] Band gap shift of Cu2ZnSnS4 thin film by residual stress
    Kim, Chan
    Hong, Sungwook
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 799 : 247 - 255
  • [33] EXPERIMENTAL BOUNDS ON BAND-GAP NARROWING SET BY HIGH OPEN CIRCUIT VOLTAGE SILICON SOLAR-CELLS
    BLAKERS, AW
    GREEN, MA
    KELLER, EM
    JOURNAL OF APPLIED PHYSICS, 1985, 57 (02) : 591 - 599
  • [34] Substitution of Li for Cu in Cu2ZnSnS4: Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells
    Lafond, A.
    Guillot-Deudon, C.
    Vidal, J.
    Paris, M.
    La, C.
    Jobic, S.
    INORGANIC CHEMISTRY, 2017, 56 (05) : 2712 - 2721
  • [35] Improvement of Js']Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface
    Zhou, Fangzhou
    Zeng, Fangqin
    Liu, Xu
    Liu, Fanyang
    Song, Ning
    Yan, Chang
    Pu, Aobo
    Park, Jongsung
    Sun, Kaiwen
    Hao, Xiaojing
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 22868 - 22873
  • [36] Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency
    Larsen, Jes K.
    Larsson, Fredrik
    Torndahl, Tobias
    Saini, Nishant
    Riekehr, Lars
    Ren, Yi
    Biswal, Adyasha
    Hauschild, Dirk
    Weinhardt, Lothar
    Heske, Clemens
    Platzer-Bjorkman, Charlotte
    ADVANCED ENERGY MATERIALS, 2019, 9 (21)
  • [37] Optimization of precursor deposition for evaporated Cu2ZnSnS4 solar cells
    Hongtao Cui
    Wei Li
    Xiaolei Liu
    Ning Song
    Chang-Yeh Lee
    Fangyang Liu
    Xiaojing Hao
    Applied Physics A, 2015, 118 : 893 - 899
  • [38] Effects of sputtering period on the performance of Cu2ZnSnS4 solar cells
    Lu, Yilei
    Wang, Shurong
    Li, Zhishan
    Jiang, Zhi
    Yang, Min
    Li, Qi
    PHYSICA B-CONDENSED MATTER, 2017, 507 : 35 - 40
  • [39] Effect of Sb and Na Incorporation in Cu2ZnSnS4 Solar Cells
    Suzon, Md Abdul Aziz
    Grenet, Louis
    Emieux, Fabrice
    De Vito, Eric
    Roux, Frederic
    Mariette, Henri
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (11):
  • [40] A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
    Valdes, M.
    Hernandez, A.
    Sanchez, Y.
    Fonoll, R.
    Placidi, M.
    Izquierdo, V
    Cabas-Vidani, A.
    Valentini, M.
    Mittiga, A.
    Pistor, P.
    Malerba, C.
    Saucedo, E.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04):