Pressure retarded osmosis for power generation and seawater desalination: Performance analysis

被引:76
|
作者
Altaee, Ali [1 ]
Zaragoza, Guillermo [2 ]
Sharif, Adel [3 ]
机构
[1] Univ West Scotland, Fac Engn & Phys Sci, Paisley PA1 2BE, Renfrew, Scotland
[2] CIEMAT Plataforma Solar Almeria, Tabernas 04200, Almeria, Spain
[3] Qatar Fdn, Qatar Energy & Environm Res Inst, Doha, Qatar
关键词
Forward osmosis; Pressure retarded osmosis; Reverse osmosis; Desalination; PRO-RO system; REVERSE-OSMOSIS; CONCENTRATED BRINES; WATER DESALINATION; ENERGY; TECHNOLOGIES;
D O I
10.1016/j.desal.2014.03.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The present study evaluated the performance of pressure retarded osmosis-reverse osmosis (PRO-RO) process for power generation and seawater desalination. Two pre-developed software were used separately to estimate the performance of forward osmosis (FO) and RO process. The draw and feed solutions in the FO process were seawater and low-quality water; i.e. wastewater effluent and brackish water. The simulation results showed that the FO performance increased with increasing seawater salinity and decreased with increasing feed water TDS. Increasing the feed and draw solution flow rate resulted in an increase in the FO performance especially when brackish water was used as a feed solution in the FO process. Power generation from the PRO process was found to increase with increasing the TDS of seawater and the flow rate of feed and draw solutions. The simulation results, however, showed that the PRO process was more sensitive to the increase in the seawater TDS than the flow rate of feed and draw solutions. For fresh water supply, the diluted seawater from the FO process was treated by RO membrane system. Up to 31% decrease in the desalination power consumption can be achieved by the PRO-RO process. It was also found that the increase in the draw solution flow rate resulted in an increase of the permeate concentration and power consumption. This issue should be considered in the operation of the PRO-RO system in order to reduce the overall treatment cost. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [31] Thermodynamic analysis of a stand-alone reverse osmosis desalination system powered by pressure retarded osmosis
    He, Wei
    Wang, Yang
    Sharif, Adel
    Shaheed, Mohammad Hasan
    Desalination, 2014, 352 : 27 - 37
  • [32] Characterization and Performance Relationships for a Commercial Thin Film Composite Membrane in Forward Osmosis Desalination and Pressure Retarded Osmosis
    Arena, Jason T.
    Manickam, Seetha S.
    Reimund, Kevin K.
    Brodskiy, Pavel
    McCutcheon, Jeffrey R.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (45) : 11393 - 11403
  • [33] Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance
    Altaee, Ali
    Palenzuela, Patricia
    Zaragoza, Guillermo
    AlAnezi, Adnan Alhathal
    APPLIED ENERGY, 2017, 191 : 328 - 345
  • [34] Effect of feed pressure on the performance of the photovoltaic powered reverse osmosis seawater desalination system
    Gandhidasan, P.
    Al-Mojel, Sultan A.
    RENEWABLE ENERGY, 2009, 34 (12) : 2824 - 2830
  • [35] Design and optimization of hybrid seawater reverse osmosis-solar-driven desalination-pressure retarded osmosis system for energy efficient desalination maximizing economic potential
    Kim, Sunwoo
    Jang, Jieun
    Lim, Jonghun
    Lee, Dongha
    Kim, Jeonghun
    Kim, Junghwan
    WATER RESEARCH, 2025, 274
  • [36] Integration of seawater desalination with power generation
    Kamal, I
    DESALINATION, 2005, 180 (1-3) : 217 - 229
  • [37] Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends - A review
    Helfer, Fernanda
    Lemckert, Charles
    Anissimov, Yuri G.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 453 : 337 - 358
  • [38] Improvement of the energy generation by pressure retarded osmosis
    Nagy, Endre
    Dudas, Jozsef
    Hegedus, Imre
    ENERGY, 2016, 116 : 1323 - 1333
  • [39] Modeling and performance analysis of forward and pressure-retarded osmosis
    Ettouney, Hisham
    Al-Hajri, Khalida
    DESALINATION AND WATER TREATMENT, 2019, 154 : 1 - 13
  • [40] Maximizing of the Energy Generation by Pressure Retarded Osmosis
    Nagy, Endre
    Dudas, Jozsef
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 223 - 228