Motion mitigation in scanned ion beam therapy through 4D-optimization

被引:75
作者
Graeff, Christian [1 ]
机构
[1] GSI Helmholzzentrum Schwerionenforsch GmbH, Darmstadt, Germany
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2014年 / 30卷 / 05期
关键词
Treatment planning; 4D-optimization; Motion mitigation; Intrafractional motion; BREATHING-SYNCHRONIZED DELIVERY; MODULATED ARC THERAPY; PARTICLE THERAPY; RESPIRATORY MOTION; TRACKING SYSTEM; TUMOR MOTION; PROTON-BEAM; RADIOTHERAPY; OPTIMIZATION; MANAGEMENT;
D O I
10.1016/j.ejmp.2014.03.011
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The treatment of moving tumors remains challenging, especially with scanned ion beam therapy due to interplay effects and the strong range dependence. This is especially true in the context of radiosurgery with high dose delivered in few or single fractions. Inverse treatment planning on the entire 4D-CT may result in conformal plans inherently adapted to the moving anatomy of the patient. Existing studies on this topic for photon therapy are reviewed, but arguably the benefits for ion beam therapy can be even greater. Compared to the main conformal mitigation technique of beam tracking, 4D-optimization permits a) easier, offline handling of range changes, b) handling of complex motion patterns, and c) improved dose shaping capabilities outside of the target. Different approaches for 4D-optimization in scanned ion beam therapy are proposed and compared, together with delivery methods that provide the necessary synchronization between irradiation and detected patient motion. Potential solutions for the improvement of robustness in 4D-optimization are discussed. A method for delivery of homogenous doses to each motion phase is presented that might be a potential solution for robust conformal dose delivery for future clinical use. In an exemplary lung cancer patient case with a large motion amplitude, 4D-optimization resulted in conformal dose coverage while beam tracking did not. In conclusion, different strategies of 4D-optimization could provide increased OAR sparing and highly conformal dose delivery for targets with complex motion patterns and large amplitudes. (C) 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:570 / 577
页数:8
相关论文
共 50 条
[31]   Impact of Different Synchrotron Flattop Operation Modes on 4D Dosimetric Uncertainties for Scanned Carbon-Ion Beam Delivery [J].
He, Pengbo ;
Li, Qiang .
FRONTIERS IN ONCOLOGY, 2022, 12
[32]   4D robust optimization including uncertainties in time structures can reduce the interplay effect in proton pencil beam scanning radiation therapy [J].
Engwall, Erik ;
Fredriksson, Albin ;
Glimelius, Lars .
MEDICAL PHYSICS, 2018, 45 (09) :4020-4029
[33]   Optimization algorithm for overlapping-field plans of scanned ion beam therapy with reduced sensitivity to range and setup uncertainties [J].
Inaniwa, Taku ;
Kanematsu, Nobuyuki ;
Furukawa, Takuji ;
Noda, Koji .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (06) :1653-1669
[34]   Robustness Against Interfraction Prostate Movement in Scanned Ion Beam Radiation Therapy [J].
Jelen, Urszula ;
Ammazzalorso, Filippo ;
Chanrion, Marie-Anne ;
Graef, Sebastian ;
Zink, Klemens ;
Engenhart-Cabillic, Rita ;
Wittig, Andrea .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 84 (02) :E257-E262
[35]   Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors [J].
Richter, Daniel ;
Saito, Nami ;
Chaudhri, Naved ;
Haertig, Martin ;
Ellerbrock, Malte ;
Jaekel, Oliver ;
Combs, Stephanie E. ;
Habermehl, Daniel ;
Herfarth, Klaus ;
Durante, Marco ;
Bert, Christoph .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 89 (01) :175-181
[36]   Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging [J].
Zhang, Ye ;
Knopf, A. ;
Tanner, C. ;
Boye, D. ;
Lomax, A. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (24) :8621-8645
[37]   The dosimetric effect of residual breath-hold motion in pencil beam scanned proton therapy - An experimental study [J].
Gorgisyan, Jenny ;
Lomax, Antony J. ;
af Rosenschold, Per Munck ;
Persson, Gitte F. ;
Krieger, Miriam ;
Colvill, Emma ;
Scherman, Jonas ;
Gagnon-Moisan, Francis ;
Egloff, Martina ;
Fattori, Giovanni ;
Engelholm, Svend Aage ;
Weber, Damien C. ;
Perrin, Rosalind .
RADIOTHERAPY AND ONCOLOGY, 2019, 134 :135-142
[38]   A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach [J].
Russo, G. ;
Attili, A. ;
Battistoni, G. ;
Bertrand, D. ;
Bourhaleb, F. ;
Cappucci, F. ;
Ciocca, M. ;
Mairani, A. ;
Milian, F. M. ;
Molinelli, S. ;
Morone, M. C. ;
Muraro, S. ;
Orts, T. ;
Patera, V. ;
Sala, P. ;
Schmitt, E. ;
Vivaldo, G. ;
Marchetto, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (01) :183-214
[39]   Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy [J].
Bauer, J. ;
Sommerer, F. ;
Mairani, A. ;
Unholtz, D. ;
Farook, R. ;
Handrack, J. ;
Frey, K. ;
Marcelos, T. ;
Tessonnier, T. ;
Ecker, S. ;
Ackermann, B. ;
Ellerbrock, M. ;
Debus, J. ;
Parodi, K. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (16) :4635-4659
[40]   Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study [J].
Seregni, M. ;
Kaderka, R. ;
Fattori, G. ;
Riboldi, M. ;
Pella, A. ;
Constantinescu, A. ;
Saito, N. ;
Durante, M. ;
Cerveri, P. ;
Bert, C. ;
Baroni, G. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (13) :4659-4678