Mixed Noise Removal using Cellular Automata and Gaussian Scale Mixture in digital image

被引:0
|
作者
Liu, Jiayou [1 ]
Lin, Kequan [1 ]
机构
[1] S China Univ Technol, Dept Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
来源
2011 IET 4TH INTERNATIONAL CONFERENCE ON WIRELESS, MOBILE & MULTIMEDIA NETWORKS (ICWMMN 2011) | 2011年
关键词
image denoising; cellular automata; Gaussian scale mixture; mixed noise; WAVELET SHRINKAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe a method for removing mixed noise from digital images which are contaminated by salt and pepper noise and Gaussian noise, based on cellular automata and Gaussian scale mixture. First we learn some rules by training on the salt and pepper noise images. These rules can then be used on the mixed noise images and remove the salt and pepper noise by CA filtering, after this, we decompose the image into subbands using the steerable pyramid, and then model the neighborhoods of coefficients using the Gaussian scale mixture: the product of a Gaussian random vector and an independent hidden random scalar multiplier. With this model, Bayesian least squares estimator is used to remove the residual noise. Denoising by this method can preserve the edges and details better than others.
引用
收藏
页码:187 / 191
页数:5
相关论文
共 50 条
  • [1] Enhanced Cellular Automata for Image Noise Removal
    Abu Dalhoum, Abdel Latif
    Al-Dhamari, Ibraheem
    Ortega, Alfonso
    Alfonseca, Manuel
    GAME-ON'ASIA 2011, 2011, : 69 - 73
  • [2] Information cryptography using cellular automata and digital image processing
    Kumar, Anil
    Sharma, Sandeep Kumar
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (04) : 1105 - 1111
  • [3] Single Image Haze Removal Using Deep Cellular Automata Learning
    Tangsakul, Surasak
    Wongthanavasu, Sartra
    IEEE ACCESS, 2020, 8 (08): : 103181 - 103199
  • [4] Image Denoising in Mixed Poisson-Gaussian Noise
    Luisier, Florian
    Blu, Thierry
    Unser, Michael
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 696 - 708
  • [5] Digital Biometric Facial Image Encryption using Chaotic Cellular Automata for Secure Image Storages
    Cheepchol, S.
    San-Um, W.
    Kiattisin, S.
    Leelasantitham, A.
    2014 FOURTH JOINT INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONIC AND ELECTRICAL ENGINEERING (JICTEE 2014), 2014,
  • [6] Mixed impulse and Gaussian noise removal using detail-preserving regularization
    Zeng, Xueying
    Yang, Lihua
    OPTICAL ENGINEERING, 2010, 49 (09)
  • [7] STATISTICAL IMAGE RECONSTRUCTION FOR MUON TOMOGRAPHY USING GAUSSIAN SCALE MIXTURE MODEL
    Wang, Guobao
    Qi, Jinyi
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2948 - 2951
  • [8] Statistical Image Reconstruction for Muon Tomography Using a Gaussian Scale Mixture Model
    Wang, Guobao
    Schultz, Larry
    Qi, Jinyi
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (04) : 2480 - 2486
  • [9] Image denoising using a local Gaussian scale mixture model in the wavelet domain
    Strela, V
    Portilla, J
    Simoncelli, E
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 363 - 371
  • [10] Application of Totalistic Cellular Automata for Noise Filtering in Image Processing
    Zhao, Y.
    Guo, H. M.
    Billings, S. A.
    JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (03) : 207 - 221