Thermodynamics of the O(N) nonlinear sigma model in 1+1 dimensions -: art. no. 076006

被引:14
作者
Andersen, JO
Boer, D
Warringa, HJ
机构
[1] NORDITA, DK-2100 Copenhagen, Denmark
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
关键词
D O I
10.1103/PhysRevD.69.076006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The thermodynamics of the O(N) nonlinear sigma model in 1+1 dimensions is studied. We calculate the pressure to next-to-leading order in the 1/N expansion and show that at this order, only the minimum of the effective potential can be rendered finite by temperature-independent renormalization. To obtain a finite effective potential away from the minimum requires an arbitrary choice of prescription, which implies that the temperature dependence is ambiguous. We show that the problem is linked to thermal infrared renormalons.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
ANDERSEN JO, UNPUB
[2]  
BARTON G, 1982, J PHYS A-MATH GEN, V15, P323, DOI 10.1088/0305-4470/15/1/040
[3]   ON THE FINITE-DIFFERENCE BETWEEN DIVERGENT SUM AND INTEGRAL [J].
BARTON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :1009-1027
[4]   Renormalons [J].
Beneke, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 317 (1-2) :1-142
[5]   The operator product expansion, non-perturbative couplings and the Landau pole:: lessons from the O(N) σ-model [J].
Beneke, M ;
Braun, VM ;
Kivel, N .
PHYSICS LETTERS B, 1998, 443 (1-4) :308-316
[6]   QUANTITATIVE PICTURE OF THE SCALING BEHAVIOR OF LATTICE NONLINEAR SIGMA-MODELS FROM THE 1/N EXPANSION [J].
BISCARI, P ;
CAMPOSTRINI, M ;
ROSSI, P .
PHYSICS LETTERS B, 1990, 242 (02) :225-233
[7]  
Blaizot JP, 2003, ANN PHYS-NEW YORK, V307, P209, DOI [10.1016/S0003-4916(03)00072-1, 10.1016/S0003-4916(03)00072-l]
[8]   Chiral symmetry at finite temperature: Linear versus nonlinear sigma models [J].
Bochkarev, A ;
Kapusta, J .
PHYSICAL REVIEW D, 1996, 54 (06) :4066-4079
[9]   SCALING PROPERTIES OF CONDENSATES IN THE 1/N EXPANSION OF LATTICE NONLINEAR SIGMA-MODELS [J].
CAMPOSTRINI, M ;
ROSSI, P .
PHYSICS LETTERS B, 1990, 242 (01) :81-88
[10]   CORRECTION [J].
CAMPOSTRINI, M .
PHYSICAL REVIEW D, 1992, 46 (06) :2741-2742