On permutation polynomials of prescribed shape

被引:29
|
作者
Akbary, Amir [1 ]
Ghioca, Dragos [1 ]
Wang, Qiang [2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Permutation polynomials; Finite fields; FINITE-FIELDS;
D O I
10.1016/j.ffa.2008.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We count permutation polynomials of F-q which are sums of m + 1 (>= 2) monomials of prescribed degrees. This allows us to prove certain results about existence of permutation polynomials of prescribed shape. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 50 条
  • [31] Some permutations and complete permutation polynomials over finite fields
    Ongan, Pinar
    Temur, Burcu Gulmez
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2154 - 2160
  • [32] Permutation polynomials over finite fields from a powerful lemma
    Yuan, Pingzhi
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (06) : 560 - 574
  • [33] New classes of complete permutation polynomials
    Li, Lisha
    Li, Chaoyun
    Li, Chunlei
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 177 - 201
  • [34] Permutation polynomials and applications to coding theory
    Laigle-Chapuy, Yann
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) : 58 - 70
  • [35] The Differential Properties of Certain Permutation Polynomials Over Finite Fields
    Garg, Kirpa
    Ul Hasan, Sartaj
    Stanica, Pantelimon
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2025,
  • [36] Enumerating permutation polynomials over finite fields by degree II
    Konyagin, S
    Pappalardi, F
    FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (01) : 26 - 37
  • [37] Permutation and local permutation polynomials of maximum degreePermutation and local permutation polynomials of maximum degreeJ. Gutierrez, J. Jiménez Urroz
    Jaime Gutierrez
    Jorge Jiménez Urroz
    Afrika Matematika, 2025, 36 (1)
  • [38] The cycle structure of a class of permutation polynomials
    Zeng, Dan
    Zeng, Xiangyong
    Li, Lisha
    Xu, Yunge
    DESIGNS CODES AND CRYPTOGRAPHY, 2022,
  • [39] Permutation polynomials and their compositional inverses over finite fields by a local method
    Wu, Danyao
    Yuan, Pingzhi
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (02) : 267 - 276
  • [40] Irreducible polynomials with several prescribed coefficients
    Ha, Junsoo
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 : 10 - 25