On permutation polynomials of prescribed shape

被引:29
|
作者
Akbary, Amir [1 ]
Ghioca, Dragos [1 ]
Wang, Qiang [2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Permutation polynomials; Finite fields; FINITE-FIELDS;
D O I
10.1016/j.ffa.2008.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We count permutation polynomials of F-q which are sums of m + 1 (>= 2) monomials of prescribed degrees. This allows us to prove certain results about existence of permutation polynomials of prescribed shape. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 50 条
  • [21] Permutation polynomials and factorization
    Kalayci, Tekgul
    Stichtenoth, Henning
    Topuzoglu, Alev
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05): : 913 - 934
  • [22] Local method for compositional inverses of permutation polynomials
    Yuan, Pingzhi
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 3070 - 3080
  • [23] Constructions of complete permutation polynomials
    Xu, Xiaofang
    Li, Chunlei
    Zeng, Xiangyong
    Helleseth, Tor
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (12) : 2869 - 2892
  • [24] Some generalized permutation polynomials over finite fields
    Qin, Xiaoer
    Yan, Li
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 75 - 87
  • [25] Necessary and sufficient conditions of two classes of permutation polynomials
    Liu, Xiaogang
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [26] Cyclotomic mapping permutation polynomials over finite fields
    Wang, Qiang
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 119 - 128
  • [27] Permutation polynomials, Tuscan-k arrays and Costas sequences
    Chu, WS
    MATHEMATICAL PROPERTIES OF SEQUENCES AND OTHER COMBINATORIAL STRUCTURES, 2003, 726 : 7 - 16
  • [28] On Inverses of Permutation Polynomials of Small Degree Over Finite Fields
    Zheng, Yanbin
    Wang, Qiang
    Wei, Wenhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 914 - 922
  • [29] Four classes of permutation polynomials of F2m
    Yuan, Jin
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) : 869 - 876
  • [30] Permutation polynomials with Carlitz rank 2
    Oliveira, Jose Alves
    Brochero Martinez, F. E.
    DISCRETE MATHEMATICS, 2021, 344 (01)