On permutation polynomials of prescribed shape

被引:32
作者
Akbary, Amir [1 ]
Ghioca, Dragos [1 ]
Wang, Qiang [2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Permutation polynomials; Finite fields; FINITE-FIELDS;
D O I
10.1016/j.ffa.2008.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We count permutation polynomials of F-q which are sums of m + 1 (>= 2) monomials of prescribed degrees. This allows us to prove certain results about existence of permutation polynomials of prescribed shape. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 14 条
[1]  
Carlitz L., 1966, Acta Arithm, V12, P77, DOI [10.4064/aa-12-1-77-84, DOI 10.4064/AA-12-1-77-84]
[2]   Circular Tuscan-k arrays from permutation binomials [J].
Chu, WS ;
Golomb, SW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) :195-202
[3]   The number of permutation polynomials of a given degree over a finite field [J].
Das, P .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) :478-490
[4]   SCHUR COVERS AND CARLITZS CONJECTURE [J].
FRIED, MD ;
GURALNICK, R ;
SAXL, J .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 82 (1-3) :157-225
[5]   Enumerating permutation polynomials over finite fields by degree II [J].
Konyagin, S ;
Pappalardi, F .
FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (01) :26-37
[6]   Enumerating permutation polynomials over finite fields by degree [J].
Konyagin, S ;
Pappalardi, F .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) :548-553
[7]   Permutation polynomials and applications to coding theory [J].
Laigle-Chapuy, Yann .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :58-70
[8]  
Lidl R., 1984, Advances in Cryptology. Proceedings of Crypto 83, P293
[9]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[10]  
Lidl R., 1997, ENCY MATH APPL, V20