Current Carrying Capacity of Quasi-1D ZrTe3 Van Der Waals Nanoribbons

被引:65
作者
Geremew, A. [1 ]
Bloodgood, M. A. [2 ]
Aytan, E. [1 ]
Woo, B. W. K. [3 ]
Corber, S. R. [3 ]
Liu, G. [1 ]
Bozhilov, K. [4 ]
Salguero, T. T. [2 ]
Rumyantsev, S. [1 ]
Rao, M. P. [3 ]
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[3] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Van der Waals materials; quasi-1D Materials; nanowires; interconnects; current density; ZrTe3; PHASE-TRANSITION; NOISE; DENSITY;
D O I
10.1109/LED.2018.2820140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quasi-1D van der Waals materials, such as transition metal trichalcogenides, have strong covalent bonds in one direction and weaker bonds in cross-plane directions. They can be prepared as crystalline nanowires or nanoribbons consisting of 1D atomic threads, i.e., chains. We have examined the current carrying capacity of ZrTe3 nanoribbons using a set of structures fabricated by the shadow mask method. The bulk crystals were synthesized by the chemical vapor transport method and exfoliated onto Si/SiO2 substrates. It was found that ZrTe3 nanoribbons reveal an exceptionally high current density, on the order of similar to 100MA/cm(2), at the peak of the stressing DC current. The low-frequency noise was of 1/f type near room temperature (f is the frequency). The noise amplitude scaled with the resistance, following the trend established for other low-dimensional materials. The high current density in ZrTe3 can be attributed to the single-crystal nature of quasi-1D van der Waals materials.
引用
收藏
页码:735 / 738
页数:4
相关论文
共 25 条
[1]  
Auth C., 2017, INT EL DEVICES MEET, DOI DOI 10.1109/IEDM.2017.8268472
[2]  
Balandin A. A., 2002, NOISE FLUCTUATIONS C, P27
[3]  
Balandin AA, 2013, NAT NANOTECHNOL, V8, P549, DOI [10.1038/nnano.2013.144, 10.1038/NNANO.2013.144]
[4]   BAND ELECTRONIC-STRUCTURE STUDY OF THE SEMIMETALLIC PROPERTIES AND THE ANISOTROPIC RESISTIVITY HUMP IN ZRTE3 [J].
CANADELL, E ;
MATHEY, Y ;
WHANGBO, MH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (01) :104-108
[5]   Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures [J].
Cheon, Gowoon ;
Duerloo, Karel-Alexander N. ;
Sendek, Austin D. ;
Porter, Chase ;
Chen, Yuan ;
Reed, Evan J. .
NANO LETTERS, 2017, 17 (03) :1915-1923
[6]   ELECTRON-MICROSCOPE STUDY OF SUPERLATTICES IN ZRTE3 [J].
EAGLESHAM, DJ ;
STEEDS, JW ;
WILSON, JA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (27) :L697-&
[7]   Electronic properties of ZrTe3 [J].
Felser, C ;
Finckh, EW ;
Kleinke, H ;
Rocker, F ;
Tremel, W .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (08) :1787-1798
[8]   REEXAMINATION OF THE CRYSTAL-STRUCTURE OF ZRTE3 [J].
FURUSETH, S ;
FJELLVAG, H .
ACTA CHEMICA SCANDINAVICA, 1991, 45 (07) :694-697
[9]  
Gambino Jeffrey P., 2009, 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), P677, DOI 10.1109/IPFA.2009.5232553
[10]   Scaling Challenges for Advanced CMOS Devices [J].
Jacob A.P. ;
Xie R. ;
Sung M.G. ;
Liebmann L. ;
Lee R.T.P. ;
Taylor B. .
International Journal of High Speed Electronics and Systems, 2017, 26 (1-2) :1-2