Hypergraphic polytopes: combinatorial properties and antipode

被引:12
作者
Benedetti, Carolina [1 ]
Bergeron, Nantel [2 ]
Machacek, John [2 ]
机构
[1] Univ Los Andes, Dept Math, Bogota, Colombia
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hypergraphs; hypergraphic polytopes; orientations of hypergraphs; Hopf algebra; antipode; simple polytopes; nestohedra; hyper-permutahedra; generalized; Pitman-Stanley polytopes; HOPF-ALGEBRAS;
D O I
10.4310/JOC.2019.v10.n3.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper, the first two authors defined orientations on hypergraphs. Using this definition we provide an explicit bijection between acyclic orientations in hypergraphs and faces of hypergraphic polytopes. This allows us to obtain a geometric interpretation of the coefficients of the antipode map in a Hopf algebra of hypergraphs. This interpretation differs from similar ones for a different Hopf structure on hypergraphs provided recently by Aguiar and Ardila. Furthermore, making use of the tools and definitions developed here regarding orientations of hypergraphs we provide a characterization of hypergraphs giving rise to simple hypergraphic polytopes in terms of acyclic orientations of the hypergraph. In particular, we recover this fact for the nestohedra and the hyperpermutahedra, and prove it for generalized Pitman-Stanley polytopes as defined here.
引用
收藏
页码:515 / 544
页数:30
相关论文
共 18 条
[1]  
Agnarsson G, 2017, ELECTRON J COMB, V24
[2]   The Flag Polynomial of the Minkowski Sum of Simplices [J].
Agnarsson, Geir .
ANNALS OF COMBINATORICS, 2013, 17 (03) :401-426
[3]   On Minkowski Sums of Simplices [J].
Agnarsson, Geir ;
Morris, Walter D. .
ANNALS OF COMBINATORICS, 2009, 13 (03) :271-287
[4]  
[Anonymous], ARXIV170907504
[5]   Antipodes and involutions [J].
Benedetti, Carolina ;
Sagan, Bruce E. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 148 :275-315
[6]   COMBINATORIAL HOPF ALGEBRAS OF SIMPLICIAL COMPLEXES [J].
Benedetti, Carolina ;
Hallam, Joshua ;
Machacek, John .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) :1737-1757
[7]  
Benedetti Carolina, ARXIV180107684
[8]   A Hopf algebra of subword complexes [J].
Bergeron, Nantel ;
Ceballos, Cesar .
ADVANCES IN MATHEMATICS, 2017, 305 :1163-1201
[9]  
Bergeron Nantel, 2018, J ALGEBR COMB
[10]  
Feichtner EM, 2005, PORT MATH, V62, P437