Using CRISPR/Cas9 for multiplex genome engineering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae

被引:25
作者
Liu, Kui [1 ,2 ]
Yuan, Xue [1 ,2 ]
Liang, Limin [1 ,2 ]
Fang, Jingping [1 ,2 ]
Chen, Youqiang [1 ,2 ,3 ]
He, Wenjin [1 ,2 ,3 ]
Xue, Ting [1 ,2 ,3 ]
机构
[1] Fujian Normal Univ, Publ Serv Platform Industrializat Dev Technol Mar, State Ocean Adm, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, Southern Inst Oceanog, Ctr Engn Technol Res Microalgae Germplasm Improve, Fuzhou 350117, Fujian, Peoples R China
[3] Fujian Normal Univ, Coll Life Sci, Key Lab Dev & Neural Biol, Fuzhou 350117, Fujian, Peoples R China
关键词
CRISPR/Cas9; Multiplex genome editing; Saccharomyces cerevisiae; Ethanol production; Aldehyde dehydrogenase (ALD) 4 gene; GLYCEROL-3-PHOSPHATE DEHYDROGENASE; ACETALDEHYDE DEHYDROGENASES; YEAST STRAINS; STRESS; GENES; GPD1;
D O I
10.1016/j.bej.2019.02.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Despite the great progress in genome editing in the model organism Saccharomyces cerevisiae, regulating the carbon flux to ethanol in the ethanol metabolic pathway to achieve high ethanol yield and productivity remains a challenge. Here, we developed an efficient strategy for single-step, high-efficiency, simultaneous multiple gene disruptions in S. cerevisiae based on the CRISPR/Cas9 system. Three genes, the alcohol dehydrogenase (ADH) 2 gene, the glycerol-3-phosphate dehydrogenase (GPD) 1 gene, and the aldehyde dehydrogenase (ALD) 4 gene, were disrupted singly and combinatorially with efficiency ranging from 80 to 100%. We applied our genome engineering tool to explore all possible single, double, and triple gene disruption combinations to search for strains with high ethanol production. This exploratory analysis identified strains with ethanol production at least 1.41-fold greater than that of the wild-type strain. Our study illustrates the applicability of this highly efficient multiplex genome engineering approach for genome editing and the regulation of metabolic flux in S. cerevisiae.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 31 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway [J].
Aranda, A ;
del Olmo, ML .
YEAST, 2003, 20 (08) :747-759
[3]  
Bakker BM, 2001, FEMS MICROBIOL REV, V25, P15, DOI 10.1016/S0168-6445(00)00039-5
[4]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[5]  
Boubekeur S, 2001, EUR J BIOCHEM, V268, P5057, DOI 10.1046/j.1432-1327.2001.02418.x
[6]   Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae [J].
Cronwright, GR ;
Rohwer, JM ;
Prior, BA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) :4448-4456
[7]   The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review [J].
de Smidt, Olga ;
du Preez, James C. ;
Albertyn, Jacobus .
FEMS YEAST RESEARCH, 2008, 8 (07) :967-978
[8]   Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene [J].
Eglinton, JM ;
Heinrich, AJ ;
Pollnitz, AP ;
Langridge, P ;
Henschke, PA ;
Lopes, MD .
YEAST, 2002, 19 (04) :295-301
[9]   YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae [J].
Guo, Yakun ;
Dong, Junkai ;
Zhou, Tong ;
Auxillos, Jamie ;
Li, Tianyi ;
Zhang, Weimin ;
Wang, Lihui ;
Shen, Yue ;
Luo, Yisha ;
Zheng, Yijing ;
Lin, Jiwei ;
Chen, Guo-Qiang ;
Wu, Qingyu ;
Cai, Yizhi ;
Dai, Junbiao .
NUCLEIC ACIDS RESEARCH, 2015, 43 (13) :e88
[10]   Gpd1 and Gpd2 Fine-Tuning for Sustainable Reduction of Glycerol Formation in Saccharomyces cerevisiae [J].
Hubmann, Georg ;
Guillouet, Stephane ;
Nevoigt, Elke .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (17) :5857-5867