High accurate estimation of relative pose of cooperative space targets based on measurement of monocular vision imaging

被引:28
作者
Pan, Hui [1 ]
Huang, Jianyu [2 ]
Qin, Shiyin [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 13期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Autonomous rendezvous and docking (ARD); Estimation of relative pose; Cooperative space targets; Multiple targets tracking; Monocular vision imaging; LOCALIZATION; NAVIGATION;
D O I
10.1016/j.ijleo.2013.12.020
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Autonomous rendezvous and docking (ARD) plays a very important role in planned space programs, the success of ARD rests with the estimation accuracy and efficiency of relative pose among various spacecraft in rendezvous and docking. In this paper, a high accuracy and efficiency estimation algorithm of relative pose of cooperative space targets is presented based on monocular vision imaging, in which a modified gravity model approach and multiple targets tracking methods are employed to improve the accuracy of feature extraction and enhance the estimation efficiency, meanwhile the Levenberg-Marquardt method (LMM) is used to achieve a well global convergence. Moreover an experimental platform with DSP and FPGA is designed and implemented. The comprehensive experimental results demonstrate its outstanding accuracy and efficiency, the update rate achieves 16 Hz and the estimated error of depth does not exceed 2% with noise influence. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:3127 / 3133
页数:7
相关论文
共 21 条
[1]  
Aghili F., 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2010), P947, DOI 10.1109/AIM.2010.5695796
[2]  
Edleblute MA, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), P112, DOI 10.1109/ICCE.2012.6161765
[3]  
Gunnam K, 2002, 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, P1735, DOI 10.1109/ICOSP.2002.1180137
[4]   A Vision-Based DSP Embedded Navigation Sensor [J].
Gunnam, Kiran K. ;
Hughes, Declan C. ;
Junkins, John L. ;
Kehtarnavaz, Nasser .
IEEE SENSORS JOURNAL, 2002, 2 (05) :428-442
[5]   POSE ESTIMATION FROM CORRESPONDING POINT DATA [J].
HARALICK, RM ;
JOO, H ;
LEE, CN ;
ZHUANG, XH ;
VAIDYA, VG ;
KIM, MB .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (06) :1426-1446
[6]  
Kelsey JM, 2006, AEROSP CONF PROC, P2038
[7]   Vision-Based Navigation in Autonomous Close Proximity Operations using Neural Networks [J].
Khansari-Zadeh, Seyed Mohammad ;
Saghafi, Fariborz .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (02) :864-883
[8]   EPnP: An Accurate O(n) Solution to the PnP Problem [J].
Lepetit, Vincent ;
Moreno-Noguer, Francesc ;
Fua, Pascal .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (02) :155-166
[9]   Fast vision-based pose estimation iterative algorithm [J].
Li, Long ;
Deng, Zong-Quan ;
Li, Bing ;
Wu, Xiang .
OPTIK, 2013, 124 (12) :1116-1121
[10]  
Liu Kevin, 2008, 2008 IEEE/ION Position, Location and Navigation Symposium - PLANS 2008, P1246, DOI 10.1109/PLANS.2008.4570045