Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions

被引:21
作者
Bostrom, Jonas [1 ]
Veryazov, Valera [1 ]
Aquilante, Francesco [2 ]
Pedersen, Thomas Bondo [3 ]
Lindh, Roland [2 ,4 ]
机构
[1] Lund Univ, Dept Theoret Chem, Ctr Chem, S-22100 Lund, Sweden
[2] Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, SE-75120 Uppsala, Sweden
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, N-0315 Oslo, Norway
[4] Uppsala Univ, Uppsala Ctr Computat Chem, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Cholesky decomposition; density fitting; MP2; analytic gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY FITTING APPROXIMATIONS; HARTREE-FOCK EXCHANGE; PERTURBATION-THEORY; MOLECULAR CALCULATIONS; RI-MP2; ALGORITHM; INTEGRALS; EFFICIENCY;
D O I
10.1002/qua.24563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm for computing analytical gradients of the second-order MOller-Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree-Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jureka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6-7. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 37 条
[1]   A derivation of the frozen-orbital unrestricted open-shell and restricted closed-shell second-order perturbation theory analytic gradient expressions [J].
Aikens, CM ;
Webb, SP ;
Bell, RL ;
Fletcher, GD ;
Schmidt, MW ;
Gordon, MS .
THEORETICAL CHEMISTRY ACCOUNTS, 2003, 110 (04) :233-253
[2]   Fast noniterative orbital localization for large molecules [J].
Aquilante, Francesco ;
Pedersen, Thomas Bondo ;
Sanchez de Meras, Alfredo ;
Koch, Henrik .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (17)
[3]   Unbiased auxiliary basis sets for accurate two-electron integral approximations [J].
Aquilante, Francesco ;
Lindh, Roland ;
Pedersen, Thomas Bondo .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11)
[4]   Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals [J].
Aquilante, Francesco ;
Pedersen, Thomas Bondo ;
Lindh, Roland .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (19)
[5]  
Aquilante F, 2011, CHALL ADV COMPUT CHE, V13, P301, DOI 10.1007/978-90-481-2853-2_13
[6]   Software News and Update MOLCAS 7: The Next Generation [J].
Aquilante, Francesco ;
De Vico, Luca ;
Ferre, Nicolas ;
Ghigo, Giovanni ;
Malmqvist, Per-Ake ;
Neogrady, Pavel ;
Pedersen, Thomas Bondo ;
Pitonak, Michal ;
Reiher, Markus ;
Roos, Bjorn O. ;
Serrano-Andres, Luis ;
Urban, Miroslav ;
Veryazov, Valera ;
Lindh, Roland .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (01) :224-247
[7]   Analytic derivatives for the Cholesky representation of the two-electron integrals [J].
Aquilante, Francesco ;
Lindh, Roland ;
Pedersen, Thomas Bondo .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (03)
[8]   Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency [J].
Aquilante, Francesco ;
Gagliardi, Laura ;
Pedersen, Thomas Bondo ;
Lindh, Roland .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (15)
[9]   Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure [J].
Baerends, E. J. ;
Ellis, D. E. ;
Ros, P. .
CHEMICAL PHYSICS, 1973, 2 (01) :41-51
[10]   Simplifications in the Generation and Transformation of Two-Electron Integrals in Molecular Calculations [J].
Beebe, Nelson H. F. ;
Linderberg, Jan .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, 12 (04) :683-705