A method of directly defining the inverse mapping for solutions of coupled systems of nonlinear differential equations

被引:9
作者
Baxter, Mathew [2 ]
Dewasurendra, Mangalagama [1 ]
Vajravelu, Kuppalapalle [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Florida Gulf Coast Univ, Dept Math, Ft Myers, FL 33965 USA
关键词
Method of directly defining the inverse mapping; Nonlinear systems; Fluid flow; Heat transfer; Analytical methods; Homotopy analysis method; HOMOTOPY ANALYSIS METHOD; CONVECTION;
D O I
10.1007/s11075-017-0359-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Liao introduced a new method for finding analytical solutions to nonlinear differential equations. In this paper, we extend this idea to nonlinear systems. We study the system of nonlinear differential equations that governs nonlinear convective heat transfer at a porous flat plate and find functions that approximate the solutions by extending Liao's Method of Directly Defining the Inverse Mapping (MDDiM).
引用
收藏
页码:1199 / 1211
页数:13
相关论文
共 50 条
  • [1] A method of directly defining the inverse mapping for solutions of coupled systems of nonlinear differential equations
    Mathew Baxter
    Mangalagama Dewasurendra
    Kuppalapalle Vajravelu
    Numerical Algorithms, 2018, 77 : 1199 - 1211
  • [2] On the method of directly defining inverse mapping for nonlinear differential equations
    Shijun Liao
    Yinlong Zhao
    Numerical Algorithms, 2016, 72 : 989 - 1020
  • [3] On the method of directly defining inverse mapping for nonlinear differential equations
    Liao, Shijun
    Zhao, Yinlong
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 989 - 1020
  • [4] A method of directly defining the inverse mapping for solutions of non-linear coupled systems arising in convection heat transfer in a second grade fluid
    Dewasurendra, Mangalagama
    Baxter, Mathew
    Vajravelu, Kuppalapalle
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 758 - 767
  • [5] Method of Directly Defining the Inverse Mapping for Nonlinear Ordinary and Partial Fractional-Order Differential Equations
    Karunarathna, Dulashini
    Dewasurendra, Mangalagama
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 379 - 389
  • [6] A series-form solution of the coupled nonlinear equations by the method of directly defined inverse mapping and SRM
    Gangadhar, K.
    Rao, M. Venkata Subba
    Kumar, Sunil
    Sharma, Sonia
    Munjam, Shankar Rao
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, : 1345 - 1354
  • [7] Series Solutions of Systems of Nonlinear Fractional Differential Equations
    Bataineh, A. S.
    Alomari, A. K.
    Noorani, M. S. M.
    Hashim, I.
    Nazar, R.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (02) : 189 - 198
  • [8] Series Solutions of Systems of Nonlinear Fractional Differential Equations
    A. S. Bataineh
    A. K. Alomari
    M. S. M. Noorani
    I. Hashim
    R. Nazar
    Acta Applicandae Mathematicae, 2009, 105 : 189 - 198
  • [9] A Method of Directly Defining the inverse Mapping for a HIV infection of CD4+ T-cells model
    Dewasurendra, Mangalagama
    Zhang, Ying
    Boyette, Noah
    Islam, Ifte
    Vajravelu, Kuppalapalle
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2021, 6 (02) : 469 - 482
  • [10] The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
    Bekir, Ahmet
    Guner, Ozkan
    Unsal, Omer
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02):