A class of new tail index estimators

被引:22
作者
Paulauskas, Vygantas [1 ]
Vaiiulis, Marijus [2 ]
机构
[1] Vilnius Univ, Dept Math & Informat, Naugarduko St 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akademijos St 4, LT-08663 Vilnius, Lithuania
关键词
Tail index estimation; Hill-type estimators; Heavy tails; HILL; INFERENCE;
D O I
10.1007/s10463-015-0548-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper, we propose a new class of functions which is used to construct tail index estimators. Functions from this new class are non-monotone in general, but they are the product of two monotone functions: the power function and the logarithmic function, which play essential role in the classical Hill estimator. The newly introduced generalized moment ratio estimator and generalized Hill estimator have a better asymptotic performance compared with the corresponding classical estimators over the whole range of the parameters that appear in the second-order regular variation condition. Asymptotic normality of the introduced estimators is proved, and comparison (using asymptotic mean square error) with other estimators of the tail index is provided. Some preliminary simulation results are presented.
引用
收藏
页码:461 / 487
页数:27
相关论文
共 50 条
  • [31] Optimal weighted pooling for inference about the tail index and extreme quantiles
    Daouia, Abdelaati
    Padoan, Simone A.
    Stupfler, Gilles
    BERNOULLI, 2024, 30 (02) : 1287 - 1312
  • [32] Tail index estimation in the presence of covariates: Stock returns' tail risk dynamics
    Nicolau, Joao
    Rodrigues, Paulo M. M.
    Stoykov, Marian Z.
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2266 - 2284
  • [33] Tail index estimation for tail adversarial stable time series with an application to high-dimensional tail clustering
    Cao, Hanyue
    Gao, Jingying
    Shao, Yu
    Sriram, T. N.
    Wang, Weiliang
    Wen, Fei
    Zhang, Ting
    JOURNAL OF TIME SERIES ANALYSIS, 2024,
  • [34] On a class of minimum contrast estimators for Gegenbauer random fields
    Espejo, Rosa M.
    Leonenko, Nikolai N.
    Olenko, Andriy
    Ruiz-Medina, Maria D.
    TEST, 2015, 24 (04) : 657 - 680
  • [35] SEVERAL MODIFICATIONS OF DPR ESTIMATOR OF THE TAIL INDEX
    Paulauskas, Vygantas
    Vaiciulis, Marijus
    LITHUANIAN MATHEMATICAL JOURNAL, 2011, 51 (01) : 36 - 50
  • [36] Multivariate moment based extreme value index estimators
    Heikkila, Matias
    Dominicy, Yves
    Ilmonen, Pauliina
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1481 - 1513
  • [37] On the comparison of several classical estimators of the extreme value index
    Cabral, Ivanilda
    Caeiro, Frederico
    Gomes, M. Ivette
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 179 - 196
  • [38] Tail-index estimates in small samples
    Huisman, R
    Koedijk, KG
    Kool, CJM
    Palm, F
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (02) : 208 - 216
  • [39] TAIL INDEX ESTIMATION BASED ON SURVEY DATA
    Bertail, Patrice
    Chautru, Emilie
    Clemencon, Stephan
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 28 - 59
  • [40] ON TAIL INDEX ESTIMATION FOR DEPENDENT, HETEROGENEOUS DATA
    Hill, Jonathan B.
    ECONOMETRIC THEORY, 2010, 26 (05) : 1398 - 1436