A class of new tail index estimators

被引:22
作者
Paulauskas, Vygantas [1 ]
Vaiiulis, Marijus [2 ]
机构
[1] Vilnius Univ, Dept Math & Informat, Naugarduko St 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akademijos St 4, LT-08663 Vilnius, Lithuania
关键词
Tail index estimation; Hill-type estimators; Heavy tails; HILL; INFERENCE;
D O I
10.1007/s10463-015-0548-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper, we propose a new class of functions which is used to construct tail index estimators. Functions from this new class are non-monotone in general, but they are the product of two monotone functions: the power function and the logarithmic function, which play essential role in the classical Hill estimator. The newly introduced generalized moment ratio estimator and generalized Hill estimator have a better asymptotic performance compared with the corresponding classical estimators over the whole range of the parameters that appear in the second-order regular variation condition. Asymptotic normality of the introduced estimators is proved, and comparison (using asymptotic mean square error) with other estimators of the tail index is provided. Some preliminary simulation results are presented.
引用
收藏
页码:461 / 487
页数:27
相关论文
共 50 条
  • [21] Semiparametric Tail Index Regression
    Li, Rui
    Leng, Chenlei
    You, Jinhong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 82 - 95
  • [22] Demystifying a class of multiply robust estimators
    Li, Wei
    Gu, Yuwen
    Liu, Lan
    BIOMETRIKA, 2020, 107 (04) : 919 - 933
  • [23] Reduced-bias kernel estimators of a positive extreme value index
    Caeiro, Frederico
    Henriques-Rodrigues, Ligia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (17) : 5867 - 5880
  • [24] Tail index estimation in the presence of long-memory dynamics
    McElroy, Tucker
    Jach, Agnieszka
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 266 - 282
  • [25] The harmonic moment tail index estimator: asymptotic distribution and robustness
    Beran, Jan
    Schell, Dieter
    Stehlik, Milan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 193 - 220
  • [26] A simple class of reduced bias kernel estimators of extreme value parameters
    Caeiro, Frederico
    Henriques-Rodrigues, Ligia
    Gomes, Dora Prata
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2019, 1 (03)
  • [27] Tail index estimation, concentration and adaptivity
    Boucheron, Stephane
    Thomas, Maud
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2751 - 2792
  • [28] On the tail index of a heavy tailed distribution
    Yongcheng Qi
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 277 - 298
  • [29] On a general class of long run variance estimators
    Zhang, Xianyang
    Shao, Xiaofeng
    ECONOMICS LETTERS, 2013, 120 (03) : 437 - 441
  • [30] Tail index estimation for dependent data
    Resnick, S
    Starica, C
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (04) : 1156 - 1183