A class of new tail index estimators

被引:22
作者
Paulauskas, Vygantas [1 ]
Vaiiulis, Marijus [2 ]
机构
[1] Vilnius Univ, Dept Math & Informat, Naugarduko St 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akademijos St 4, LT-08663 Vilnius, Lithuania
关键词
Tail index estimation; Hill-type estimators; Heavy tails; HILL; INFERENCE;
D O I
10.1007/s10463-015-0548-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper, we propose a new class of functions which is used to construct tail index estimators. Functions from this new class are non-monotone in general, but they are the product of two monotone functions: the power function and the logarithmic function, which play essential role in the classical Hill estimator. The newly introduced generalized moment ratio estimator and generalized Hill estimator have a better asymptotic performance compared with the corresponding classical estimators over the whole range of the parameters that appear in the second-order regular variation condition. Asymptotic normality of the introduced estimators is proved, and comparison (using asymptotic mean square error) with other estimators of the tail index is provided. Some preliminary simulation results are presented.
引用
收藏
页码:461 / 487
页数:27
相关论文
共 50 条
  • [1] A class of new tail index estimators
    Vygantas Paulauskas
    Marijus Vaičiulis
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 461 - 487
  • [2] Regression estimators for the tail index
    Al-Najafi, Amenah
    Stacho, Laszlo L.
    Viharos, Laszlo
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 649 - 678
  • [3] Bias-corrected geometric-type estimators of the tail index
    Brito, Margarida
    Cavalcante, Laura
    Moreira Freitas, Ana Cristina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (21)
  • [4] Weighted least squares estimators for the Parzen tail index
    Al-Najafi, Amenah
    Viharos, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) : 259 - 269
  • [5] Improved reduced-bias tail index and quantile estimators
    Beirlant, Jan
    Figueiredo, Femanda
    Gomes, M. Ivette
    Vandewalle, Bjoern
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1851 - 1870
  • [6] A REVIEW OF MORE THAN ONE HUNDRED PARETO-TAIL INDEX ESTIMATORS
    Fedotenkov, Igor
    STATISTICA, 2020, 80 (03) : 245 - 299
  • [7] Reduced-Bias Tail Index Estimators Under a Third-Order Framework
    Caeiro, Frederico
    Gomes, M. Ivette
    Rodrigues, Ligia Henriques
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (07) : 1019 - 1040
  • [8] A new partially reduced-bias mean-of-order p class of extreme value index estimators
    Gomes, M. Ivette
    Brilhante, M. Fatima
    Caeiro, Frederico
    Pestana, Dinis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 82 : 223 - 237
  • [9] A new class of asymptotically efficient estimators for moment condition models
    Fan, Yanqin
    Gentry, Matthew
    Li, Tong
    JOURNAL OF ECONOMETRICS, 2011, 162 (02) : 268 - 277
  • [10] Smooth tail-index estimation
    Mueller, Samuel
    Rufibach, Kaspar
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (09) : 1155 - 1167