Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine

被引:4
作者
Francis, W. Loren [1 ]
Eliason, Travis D. [1 ]
Thacker, Ben H. [1 ]
Paskoff, Glenn R. [2 ]
Shender, Barry S. [2 ]
Nicolella, Daniel P. [1 ]
机构
[1] Southwest Res Inst, Dept Mat Engn, San Antonio, TX 78238 USA
[2] NAVAIR, Patuxent River, MD USA
关键词
verification; validation; finite element; cervical; spine; metric; ligament; FINITE-ELEMENT MODEL; DISC DEGENERATION; INJURIES; WHIPLASH; FACETS;
D O I
10.1080/10255842.2012.726353
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The objective of this investigation was to develop probabilistic finite element (FE) models of the anterior longitudinal ligament (ALL) and posterior longitudinal ligament (PLL) of the cervical spine that incorporate the natural variability of biological specimens. In addition to the model development, a rigorous validation methodology was developed to quantify model performance. Experimental data for the geometry and dynamic properties of the ALL and PLL were used to create probabilistic FE models capable of predicting not only the mean dynamic relaxation response but also the observed experimental variation of that response. The probabilistic FE model uses a quasilinear viscoelastic material constitutive model to capture the time-dependent behaviour of the ligaments. The probabilistic analysis approach yields a statistical distribution for the model-predicted response at each time point rather than a single deterministic quantity (e.g. ligament force) and that response can be statistically compared to experimental data for validation. A quantitative metric that compares the cumulative distribution functions of the experimental data and model response is computed for both the ALL and PLL throughout the time histories and is used to quantify model performance.
引用
收藏
页码:905 / 916
页数:12
相关论文
共 19 条
[1]  
ASME, 2019, 102006 ASME V V
[2]   Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics [J].
Brolin, K ;
Halldin, P .
SPINE, 2004, 29 (04) :376-385
[3]   Cervical spine segment finite element model for traumatic injury prediction [J].
DeWit, Jennifer A. ;
Cronin, Duane S. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 10 :138-150
[4]   Model validation and predictive capability for the thermal challenge problem [J].
Ferson, Scott ;
Oberkampf, William L. ;
Ginzburg, Lev .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (29-32) :2408-2430
[5]   Investigation of whiplash injuries in the upper cervical spine using a detailed neck model [J].
Fice, Jason B. ;
Cronin, Duane S. .
JOURNAL OF BIOMECHANICS, 2012, 45 (06) :1098-1102
[6]   Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc [J].
Little, J. P. ;
Adam, Ct ;
Evans, J. H. ;
Pettet, G. J. ;
Pearcy, Mt .
JOURNAL OF BIOMECHANICS, 2007, 40 (12) :2744-2751
[7]  
Lucas S, 2006, AM SOC BIOM ANN M BL
[8]   Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations [J].
Lucas, Scott R. ;
Bass, Cameron R. ;
Salzar, Robert S. ;
Oyen, Michelle L. ;
Planchak, Chris ;
Ziemba, Adam ;
Shender, Barry S. ;
Paskoff, Glenn .
ACTA BIOMATERIALIA, 2008, 4 (01) :117-125
[9]   A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets [J].
Maurel, N ;
Lavaste, F ;
Skalli, W .
JOURNAL OF BIOMECHANICS, 1997, 30 (09) :921-931
[10]  
Nicolella DP, 2006, 5 WORLD C BIOM MUN G