Parametric Likelihood Inference for Interval Censored Competing Risks Data

被引:32
作者
Hudgens, Michael G. [1 ]
Li, Chenxi [1 ]
Fine, Jason P. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
关键词
Competing risks; Cumulative incidence function; Gompertz; HIV; AIDS; Maximum likelihood; CONSISTENCY; MLE;
D O I
10.1111/biom.12109
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parametric estimation of the cumulative incidence function (CIF) is considered for competing risks data subject to interval censoring. Existing parametric models of the CIF for right censored competing risks data are adapted to the general case of interval censoring. Maximum likelihood estimators for the CIF are considered under the assumed models, extending earlier work on nonparametric estimation. A simple naive likelihood estimator is also considered that utilizes only part of the observed data. The naive estimator enables separate estimation of models for each cause, unlike full maximum likelihood in which all models are fit simultaneously. The naive likelihood is shown to be valid under mixed case interval censoring, but not under an independent inspection process model, in contrast with full maximum likelihood which is valid under both interval censoring models. In simulations, the naive estimator is shown to perform well and yield comparable efficiency to the full likelihood estimator in some settings. The methods are applied to data from a large, recent randomized clinical trial for the prevention of mother-to-child transmission of HIV.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2003, STAT MODEL METHODS L
[2]  
[Anonymous], 2008, THESIS U PITTSBURGH
[3]   Maternal or Infant Antiretroviral Drugs to Reduce HIV-1 Transmission [J].
Chasela, Charles S. ;
Hudgens, Michael G. ;
Jamieson, Denise J. ;
Kayira, Dumbani ;
Hosseinipour, Mina C. ;
Kourtis, Athena P. ;
Martinson, Francis ;
Tegha, Gerald ;
Knight, Rodney J. ;
Ahmed, Yusuf I. ;
Kamwendo, Deborah D. ;
Hoffman, Irving F. ;
Ellington, Sascha R. ;
Kacheche, Zebrone ;
Soko, Alice ;
Wiener, Jeffrey B. ;
Fiscus, Susan A. ;
Kazembe, Peter ;
Mofolo, Innocent A. ;
Chigwenembe, Maggie ;
Sichali, Dorothy S. ;
van der Horst, Charles M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (24) :2271-2281
[4]   Current status data with competing risks: Consistency and rates of convergence of the MLE [J].
Groeneboom, Piet ;
Maathuis, Marloes H. ;
Wellner, Jon A. .
ANNALS OF STATISTICS, 2008, 36 (03) :1031-1063
[5]   Current status data with competing risks: Limiting distribution of the MLE [J].
Groeneboom, Piet ;
Maathuis, Marloes H. ;
Wellner, Jon A. .
ANNALS OF STATISTICS, 2008, 36 (03) :1064-1089
[6]   THE VALIDITY OF INFERENCES BASED ON INCOMPLETE OBSERVATIONS IN DISEASE STATE MODELS [J].
GRUGER, J ;
KAY, R ;
SCHUMACHER, M .
BIOMETRICS, 1991, 47 (02) :595-605
[7]   Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation [J].
Hudgens, MG ;
Satten, GA ;
Longini, IM .
BIOMETRICS, 2001, 57 (01) :74-80
[8]   Direct parametric inference for the cumulative incidence function [J].
Jeong, JH ;
Fine, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 :187-200
[9]   Nonparametric estimation from current status data with competing risks [J].
Jewell, NP ;
Van der Laan, M ;
Henneman, T .
BIOMETRIKA, 2003, 90 (01) :183-197
[10]  
Nyangweso P, 2011, U N CAROLINA CHAPEL