HIDDEN TRANSLATION AND TRANSLATING COSET IN QUANTUM COMPUTING

被引:14
作者
Friedl, Katalin [1 ]
Ivanyos, Gabor
Magniez, Frederic [2 ]
Santha, Miklos [2 ,3 ]
Sen, Pranab [4 ]
机构
[1] Budapest Univ Technol & Econ, Budapest, Hungary
[2] Univ Paris Diderot, CNRS, LIAFA, Sorbonne Paris Cite, F-75205 Paris, France
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[4] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Bombay 400005, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
quantum algorithms; hidden subgroup problem; solvable groups; SUBGROUP PROBLEM; FOURIER-TRANSFORMS; ALGORITHMS;
D O I
10.1137/130907203
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of nonabelian solvable groups, including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Z(p)(n), whenever p is a fixed prime. For the induction step, we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden Subgroup and prove a powerful self-reducibility result: Translating Coset in a finite solvable group G is reducible to instances of Translating Coset in G/N and N, for appropriate normal subgroups N of G. Our self-reducibility framework, combined with Kuperberg's subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 45 条
[1]  
AHARONOV A., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
[2]  
Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
[3]  
AHARONOV D., 1998, ANN REV COMPUTATIONA, VVI, P1
[4]  
[Anonymous], TECHNICAL REPORT
[5]  
[Anonymous], 1997, P TWENTYNINTH ANN AC
[6]  
Babai L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P229, DOI 10.1109/SFCS.1984.715919
[7]   FAST MONTE-CARLO ALGORITHMS FOR PERMUTATION-GROUPS [J].
BABAI, L ;
COOPERMAN, G ;
FINKELSTEIN, L ;
LUKS, E ;
SERESS, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 50 (02) :296-308
[8]   From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups [J].
Bacon, D ;
Childs, AM ;
van Dam, W .
46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, :469-478
[9]   Quantum fingerprinting [J].
Buhrman, H ;
Cleve, R ;
Watrous, J ;
de Wolf, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[10]  
Cheung KKH, 2001, QUANTUM INF COMPUT, V1, P26