Large-amplitude oscillatory shear flow simulation for a FENE fluid

被引:3
|
作者
Gomez-Lopez, Aldo [1 ]
Ferrer, Victor H. [2 ]
Rincon, Eduardo [3 ]
Aguayo, Juan P. [4 ]
Chavez, Angel E. [5 ]
Vargas, Rene O. [6 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Termofluidos, Mexico City 04510, DF, Mexico
[2] Inst Politecn Nacl, ESIME Zacatenco, Mexico City 07738, DF, Mexico
[3] Morelos Soc Serv Ninez Sc, Morelos 11, Mexico City 01210, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Mexico City 04510, DF, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Quim, Dept Ingn Quim, Mexico City 04510, DF, Mexico
[6] Inst Politecn Nacl, ESIME Azcapotzalco, Ave Granjas 682, Mexico City 02250, DF, Mexico
关键词
LAOS; Multiscale; Maximum extension length; Oscillatory flow; Viscoelasticity; FENE model; MODEL; DYNAMICS; RHEOLOGY;
D O I
10.1007/s00397-019-01145-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, the FENE dumbbell model under small- and large-amplitude oscillatory shear flows using a micro-macro approach is presented. This approach involves the evolution of an ensemble of Brownian Configuration Fields which describes the polymer dynamics of the microscopic scale and the momentum equation describes the macroscopic scale. The Lissajous curves for the shear stress and the first normal stress difference versus the instantaneous strain or strain rate for the elastic or viscous projection are shown. The influences of the solvent/polymer viscosity ratio, the maximum extension length, and the relation between strain rate and frequency are analyzed. An important finding is the self-intersection of the Lissajous curves, which forms secondary loops for short extension lengths and high Weissenberg/Deborah dimensionless numbers ratio.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [41] Power series for normal stress differences of polymeric liquids in large-amplitude oscillatory shear flow
    Poungthong, P.
    Giacomin, A. J.
    Saengow, C.
    Kolitawong, C.
    PHYSICS OF FLUIDS, 2019, 31 (03)
  • [42] Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions
    Schmalzer, A. M.
    Bird, R. B.
    Giacomin, A. J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 222 : 56 - 71
  • [43] Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow
    Giacomin, A. Jeffrey
    Gilbert, Peter H.
    Merger, Dimitri
    Wilhelm, Manfred
    RHEOLOGICA ACTA, 2015, 54 (04) : 263 - 285
  • [44] Large-amplitude oscillatory shear flow from general rigid bead-rod theory
    Pak, Myong Chol
    Giacomin, A. J.
    Kanso, M. A.
    Pak, Hak Chol
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [45] Small-angle light scattering in large-amplitude oscillatory shear
    Gilbert, P. H.
    Giacomin, A. J.
    PHYSICS OF FLUIDS, 2019, 31 (10)
  • [46] Strain-rate frequency superposition in large-amplitude oscillatory shear
    Kalelkar, Chirag
    Lele, Ashish
    Kamble, Samruddhi
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [47] WALL SLIP AND THE NONLINEAR DYNAMICS OF LARGE-AMPLITUDE OSCILLATORY SHEAR FLOWS
    GRAHAM, MD
    JOURNAL OF RHEOLOGY, 1995, 39 (04) : 697 - 712
  • [48] Frieze group analysis of asymmetric response to large-amplitude oscillatory shear
    Rogers, S. A.
    Vlassopoulos, D.
    JOURNAL OF RHEOLOGY, 2010, 54 (04) : 859 - 880
  • [49] LARGE-AMPLITUDE LONG WAVES IN A SHEAR-FLOW
    STERN, ME
    PALDOR, N
    PHYSICS OF FLUIDS, 1983, 26 (04) : 906 - 919
  • [50] Series expansion for shear stress in large-amplitude oscillatory shear flow from oldroyd 8-constant framework
    Poungthong, Pongthep
    Giacomin, Alan J.
    Saengow, Chaimongkol
    Kolitawong, Chanyut
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 97 (S1): : 1655 - 1675