Comparative Study of Different Cement-Based Inorganic Pastes towards the Development of FRIP Strengthening Technology

被引:50
作者
Dai, Jian-Guo [1 ]
Munir, Sarfraz [1 ]
Ding, Zhu [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
[2] Shenzhen Univ, Sch Civil Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Fiber-reinforced inorganic polymer (FRIP); Strengthening; Concrete structures; Magneisum phosphate cement (MPC); Magnesium oxychloride cement (MOC); Geopolymer (GP); Polymer-modified mortar (PMM); MAGNESIUM-OXYCHLORIDE CEMENT; TEXTILE REINFORCED-CONCRETE; PHOSPHATE CEMENT; RC BEAMS; COMPOSITES; BEHAVIOR; SHEETS; SHEAR; CFRP; FRP;
D O I
10.1061/(ASCE)CC.1943-5614.0000420
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The development of fiber-reinforced inorganic polymer (FRIP) composites for strengthening reinforced concrete (RC) structures has become an active field of research in recent years. Compared with fiber-reinforced polymer (FRP) strengthening systems, a FRIP strengthening system possesses improved fire resistance but its performance depends largely on appropriate inorganic paste selection. This paper presents a comparative study of four typical inorganic pastes, made from the following: (1) magnesium phosphate cement (MPC), (2) magnesium oxychloride cement (MOC), (3) geopolymer (GP) cement (i.e., alkali-activated slag cement), and (4) polymer-modified mortar (PMM). The aim was to investigate their performance both as a matrix and bonding adhesive for FRIP strengthening systems. The evaluated performance included the workability and mechanical properties of inorganic pastes, the bonding strength of these pastes with both a concrete substrate and dry fiber sheets, the tensile properties of the formed FRIP composites, and the flexural strength of FRIP-strengthened concrete beams. The microstructures of the four types of inorganic matrix and the fiber-to-matrix interface were also examined. The MPC-based and MOC-based inorganic pastes exhibit similar structural performance as commercially available PMM and are well-suited for the development of FRIP strengthening technology. Geopolymer seems to be the most brittle among the four studied inorganic pastes. (C) 2013 American Society of Civil Engineers.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Aldea C. M., 2005, P THIN FIB TEXT REIN, P1579
[2]  
[Anonymous], 2008, C34808 ASTM
[3]  
ASTM, 2008, ASTM C191-08
[4]   Peel and shear fracture characterization of debonding in FRP plated concrete affected by moisture [J].
Au, C ;
Büyüköztürk, O .
JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2006, 10 (01) :35-47
[5]   Cementitious composites reinforced with continuous carbon fibres for strengthening of concrete structures [J].
Badanoiu, A ;
Holmgren, J .
CEMENT & CONCRETE COMPOSITES, 2003, 25 (03) :387-394
[6]   Material and bonding characteristics for dimensioning and modelling of textile reinforced concrete (TRC) elements [J].
Banholzer, Bjoern ;
Brockmann, Tanja ;
Brameshuber, Wolfgang .
MATERIALS AND STRUCTURES, 2006, 39 (08) :749-763
[7]   Evolution of binder structure in sodium silicate-activated slag-metakaolin blends [J].
Bernal, Susan A. ;
Provis, John L. ;
Rose, Volker ;
Mejia de Gutierrez, Ruby .
CEMENT & CONCRETE COMPOSITES, 2011, 33 (01) :46-54
[8]  
Bisby L., 2011, P INT S FRP REINF RC, P1
[9]   Textile reinforced concrete for strengthening in bending and shear [J].
Brueckner, A. ;
Ortlepp, R. ;
Curbach, M. .
MATERIALS AND STRUCTURES, 2006, 39 (08) :741-748
[10]   Microstructures of magnesium oxychloride [J].
Chau, C. K. ;
Li, Zongjin .
MATERIALS AND STRUCTURES, 2008, 41 (05) :853-862