Studying edge geometry in transiently turbulent shear flows

被引:14
作者
Chantry, Matthew [1 ]
Schneider, Tobias M. [2 ,3 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
instability; nonlinear dynamical systems; transition to turbulence; PLANE COUETTE-FLOW; TRANSITIONAL PIPE-FLOW; BOUNDARY; DYNAMICS; STATES; MODELS;
D O I
10.1017/jfm.2014.150
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories, we provide evidence that the edge of chaos does not separate state space globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.
引用
收藏
页码:506 / 517
页数:12
相关论文
共 26 条
  • [1] The Onset of Turbulence in Pipe Flow
    Avila, Kerstin
    Moxey, David
    de Lozar, Alberto
    Avila, Marc
    Barkley, Dwight
    Hof, Bjorn
    [J]. SCIENCE, 2011, 333 (6039) : 192 - 196
  • [2] Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow
    Avila, M.
    Mellibovsky, F.
    Roland, N.
    Hof, B.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [3] Edge State in Pipe Flow Experiments
    de Lozar, A.
    Mellibovsky, F.
    Avila, M.
    Hof, B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [4] Transition in pipe flow: the saddle structure on the boundary of turbulence
    Duguet, Y.
    Willis, A. P.
    Kerswell, R. R.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 613 (255-274) : 255 - 274
  • [5] Sensitive dependence on initial conditions in transition to turbulence in pipe flow
    Faisst, H
    Eckhardt, B
    [J]. JOURNAL OF FLUID MECHANICS, 2004, 504 : 343 - 352
  • [6] Visualizing the geometry of state space in plane Couette flow
    Gibson, J. F.
    Halcrow, J.
    Cvitanovic, P.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 611 (107-130) : 107 - 130
  • [7] Gibson J.F., 2012, CHANNELFLOW SPECTRAL
  • [8] Finite lifetime of turbulence in shear flows
    Hof, Bjoern
    Westerweel, Jerry
    Schneider, Tobias M.
    Eckhardt, Bruno
    [J]. NATURE, 2006, 443 (7107) : 59 - 62
  • [9] The dynamics of bursting process in wall turbulence
    Itano, T
    Toh, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) : 703 - 716
  • [10] Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst
    Kawahara, G
    Kida, S
    [J]. JOURNAL OF FLUID MECHANICS, 2001, 449 : 291 - 300