Deep Learning-Based Segmentation in Classification of Alzheimer's Disease

被引:31
|
作者
Buvaneswari, P. R. [1 ]
Gayathri, R. [2 ]
机构
[1] Saveetha Engn Coll, Chennai, Tamil Nadu, India
[2] Sri Venkateswara Coll Engn, Chennai, Tamil Nadu, India
关键词
Alzheimer’ s disease; Cognitive normal (CN); Mild cognitive impairment (MCI); ADNI; Grey matter; White matter; Cortex surface; Gyri and sulci contour; Cortex thickness; Hippocampus; Cerebrospinal fluid (CSF); SegNet; ResNet-101; MILD COGNITIVE IMPAIRMENT; STRUCTURAL MRI; DIAGNOSIS; PREDICTION; INSTITUTE; CRITERIA;
D O I
10.1007/s13369-020-05193-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classification of Alzheimer's disease (AD) using ADNI dataset requires suitable feature segmenting techniques to detect the existing and relevant finer smaller brain region features, together with effective classification model, to eliminate a massive, labor-intensive and time-consuming voxel-based morphometry technique. Here, in this paper, a deep learning-based segmenting method using SegNet to detect AD pertinent brain parts features from structural magnetic resonance imaging (sMRI) and subsequently classifying accurately AD and dementia condition using ResNet-101 is presented. A deep learning-based image segmenting approach is experimented in detecting the delicate features of brain morphological changes due to AD that benefits classification performance for cognitive normal, mild cognitive impairment and AD, and thus provides an easy automatic diagnosis of Alzheimer's diseases. For classification, ResNet-101 is trained applying features extracted from SegNet with ADNI dataset. This paper demonstrated particularly to attain top-level automated classification. The seven morphological features like grey matter, white matter, cortex surface, gyri and sulci contour, cortex thickness, hippocampus and cerebrospinal fluid space extracted from 240 sMRI with SegNet are used to train ResNet for classification, and this classifier achieved a sensitivity of 96% and an accuracy of 95% over 240 ADNI sMRI other than used for training.
引用
收藏
页码:5373 / 5383
页数:11
相关论文
共 50 条
  • [1] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [2] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [3] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [4] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [5] Deep learning-based identification of genetic variants: application to Alzheimer's disease classification
    Jo, Taeho
    Nho, Kwangsik
    Bice, Paula
    Saykin, Andrew J.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [6] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [7] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [8] Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification
    Vimbi, Viswan
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 186 - 204
  • [9] Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease
    Hu, Jingjing
    Qing, Zhao
    Liu, Renyuan
    Zhang, Xin
    Lv, Pin
    Wang, Maoxue
    Wang, Yang
    He, Kelei
    Gao, Yang
    Zhang, Bing
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [10] Deep Learning-based Classification of MRI Images for Early Detection and Staging of Alzheimer's Disease
    Kumar, Parvatham Niranjan
    Maguluri, Lakshmana Phaneendra
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 451 - 459