An EEG-based Subject- and Session-independent Drowsiness Detection

被引:10
作者
Lin, Chin-Teng [1 ]
Pal, Nikhil R. [2 ]
Chuang, Chien-Yao [2 ]
Jung, Tzyy-Ping [1 ,3 ]
Ko, Li-Wei [1 ,3 ]
Liang, Sheng-Fu [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Control Engn, 1001 Ta Hsueh Rd, Hsinchu 30050, Taiwan
[2] Natl Chiao Tung Univ, Dept Brain Res Ctr, Hsinchu, Turkey
[3] Natl Chiao Tung Univ, Brain Res Ctr, Hsinchu, Turkey
来源
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8 | 2008年
关键词
D O I
10.1109/IJCNN.2008.4634289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring and predicting human cognitive state and performance using physiological signals such as Electroencephalogram (EEG) have recently gained increasing attention in the fields of brain-computer interface and cognitive neuroscience. Most previous psychophysiological studies of cognitive changes have attempted to use the same model for all subjects. However, the relatively large individual variability in EEG dynamics relating to loss of alertness suggests that for many operators, group statistics cannot be used to accurately predict changes in cognitive states. Attempts have also been made to build a subject-dependent model for each individual based on his/her pilot data to account for individual variability. However, such methods assume the cross-session variability in EEG dynamics to be negligible, which could be problematic due to electrode displacements, environmental noises, and skin-electrode impedance. Here first we show that the EEG power in the alpha and theta bands are strongly correlated with changes in the subject's cognitive state reflected through his driving performance and hence his departure from alertness. Then under very mild and realistic assumptions we derive a model for the alert state of the person using EEG power in the alpha and theta bands. We demonstrate that deviations (computed by Mahalanobis distance) of the EEG power in the alpha and theta bands from the corresponding alert models are correlated to the changes in the driving performance. Finally, for detection of drowsiness we use a linear combination of deviations of the EEG power in the alpha band and theta band from the respective alert models that best correlates with subject's changing level of alertness, indexed by subject's behavioral response in the driving task. This approach could lead to a practical system for noninvasive monitoring of the cognitive state of human operators in attention-critical settings.
引用
收藏
页码:3448 / +
页数:3
相关论文
共 34 条
[1]  
[Anonymous], 1985, ENCY STAT SCI
[2]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[3]   OPERANT CONTROL OF OCCIPITAL THETA RHYTHM AFFECTS PERFORMANCE IN A RADAR MONITORING TASK [J].
BEATTY, J ;
GREENBERG, A ;
DEIBLER, WP ;
OHANLON, JF .
SCIENCE, 1974, 183 (4127) :871-873
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]  
Chandra MP., 1936, P NATL I SCI INDIA, V2, P49
[6]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[7]   An alternative perspective on adaptive independent component analysis algorithms [J].
Girolami, M .
NEURAL COMPUTATION, 1998, 10 (08) :2103-2114
[8]  
Huang RS, 1996, IEEE IJCNN, P641, DOI 10.1109/ICNN.1996.548971
[9]  
JOUTSINIEMI SL, 1995, IEEE T BIOMEDICAL EN, V42
[10]   Estimating alertness from the EEG power spectrum [J].
Jung, TP ;
Makeig, S ;
Stensmo, M ;
Sejnowski, TJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (01) :60-69