Order of magnitude of multiple Fourier coefficients of functions of bounded variation

被引:15
作者
Fülöp, V [1 ]
Móricz, F [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
bounded variation the seuse of Vitali and of Hardy; multiple Fourier coefficients;
D O I
10.1023/B:AMHU.0000034364.78876.af
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : R-n --> C be a periodic function with period 2pi in each variable and of bounded variation in the sense of Vitali over [0, 2pi](n) with the total variation V(f; [0 2pi](n)). In case f is Lebesgue integrable over the n-dimensional torus [0, 2pi](n) denote by (f) over cap (k(1),..., k(n)) the multiple Fourier coefficients of f, where (k(1),..., k(n)). We present a straightforward proof of the estimate \(f) over cap (k(1),...,k(n))\ less than or equal to V(f; [0, 2pi](n))/(2pi)(n) Pi(j = 1)(n) k(j), provided k(j) not equal 0, j = 1,..., n. Both the order of magnitude and the constant in this estimate are exact.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 9 条
[1]   Properties of functions f(x, y) of bounded variation [J].
Adams, C. Raymond ;
Clarkson, James A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1934, 36 (1-4) :711-730
[2]  
[Anonymous], 1950, FOURIER SERIES
[3]   On definitions of bounded variation for functions of two variables [J].
Clarkson, James A. ;
Adams, C. Raymond .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :824-854
[4]  
Hahn H, 1921, THEORIE REELLEN FUNK
[5]  
Hardy G. H., 1905, Quart. J. Math, V37, P53
[6]  
Hobson EW, 1927, The theory of functions of a real variable and the theory of fourier series, V1
[7]  
Moricz F., 2002, ANALYSIS-UK, V22, P335, DOI 10.1524/anly.2002.22.4.335
[9]  
Zygmund A., 1959, TRIGONOMETRIC SERIES