Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

被引:45
|
作者
Kouri, D. P. [1 ]
Surowiec, T. M. [2 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320,POB 5800, Albuquerque, NM 87185 USA
[2] Philipps Univ Marburg, Math & Informat FB12, Hans Meerwein Str 6, D-35032 Marburg, Germany
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2018年 / 6卷 / 02期
关键词
risk-averse; PDE-constrained optimization; risk measures; uncertainty quantification; stochastic optimization; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION ALGORITHM; STOCHASTIC COLLOCATION; PROBABILITY FUNCTIONS; RANDOM-COEFFICIENTS; UNCERTAINTY; DERIVATIVES; DESIGN; SPACES;
D O I
10.1137/16M1086613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. In this work, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Finally, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.
引用
收藏
页码:787 / 815
页数:29
相关论文
共 50 条
  • [41] A new approximation of the Schur complement in preconditioners for PDE-constrained optimization
    Pearson, John W.
    Wathen, Andrew J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (05) : 816 - 829
  • [42] Quantitative stability analysis of optimal solutions in PDE-constrained optimization
    Brandes, Kerstin
    Griesse, Roland
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 908 - 926
  • [43] Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization
    Griesse, Roland
    Vexler, Boris
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) : 22 - 48
  • [44] A LOW-RANK IN TIME APPROACH TO PDE-CONSTRAINED OPTIMIZATION
    Stoll, Martin
    Breiten, Tobias
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : B1 - B29
  • [45] Continuous analogue to iterative optimization for PDE-constrained inverse problems
    Boiger, R.
    Fiedler, A.
    Hasenauer, J.
    Kaltenbacher, B.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (06) : 710 - 734
  • [46] Guaranteed satisfaction of inequality state constraints in PDE-constrained optimization
    Schultz, Eduardo S.
    Hannemann-Tamas, Ralf
    Mitsos, Alexander
    AUTOMATICA, 2020, 111
  • [47] Sundance: High-level software for PDE-constrained optimization
    Long, Kevin
    Boggs, Paul T.
    Waanders, Bart G. van Bloemen
    SCIENTIFIC PROGRAMMING, 2012, 20 (03) : 293 - 310
  • [48] Adaptive finite element methods for sparse PDE-constrained optimization
    Allendes, A.
    Fuica, F.
    Otarola, E.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 2106 - 2142
  • [49] Adjoint method for a tumor growth PDE-constrained optimization problem
    Knopoff, D. A.
    Fernandez, D. R.
    Torres, G. A.
    Turner, C. V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (06) : 1104 - 1119
  • [50] HYPERDIFFERENTIAL SENSITIVITY ANALYSIS OF UNCERTAIN PARAMETERS IN PDE-CONSTRAINED OPTIMIZATION
    Hart, Joseph
    Waanders, Bart van Bloemen
    Herzog, Roland
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (03) : 225 - 248