Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

被引:45
|
作者
Kouri, D. P. [1 ]
Surowiec, T. M. [2 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320,POB 5800, Albuquerque, NM 87185 USA
[2] Philipps Univ Marburg, Math & Informat FB12, Hans Meerwein Str 6, D-35032 Marburg, Germany
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2018年 / 6卷 / 02期
关键词
risk-averse; PDE-constrained optimization; risk measures; uncertainty quantification; stochastic optimization; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION ALGORITHM; STOCHASTIC COLLOCATION; PROBABILITY FUNCTIONS; RANDOM-COEFFICIENTS; UNCERTAINTY; DERIVATIVES; DESIGN; SPACES;
D O I
10.1137/16M1086613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. In this work, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Finally, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.
引用
收藏
页码:787 / 815
页数:29
相关论文
共 50 条
  • [1] Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
    Kouri, Drew P.
    Surowiecz, Thomas M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1321 - 1322
  • [2] AN INTERIOR-POINT APPROACH FOR SOLVING RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION PROBLEMS WITH COHERENT RISK MEASURES
    Garreis, Sebastian
    Surowiec, Thomas M.
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 1 - 29
  • [3] RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION USING THE CONDITIONAL VALUE-AT-RISK
    Kouri, D. P.
    Surowiec, T. M.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 365 - 396
  • [4] A Locally Adapted Reduced-Basis Method for Solving Risk-Averse PDE-Constrained Optimization Problems
    Zou, Zilong
    Kouri, Drew P.
    Aquino, Wilkins
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1629 - 1651
  • [5] AN APPROXIMATION SCHEME FOR DISTRIBUTIONALLY ROBUST PDE-CONSTRAINED OPTIMIZATION
    MILZ, J. O. H. A. N. N. E. S.
    ULBRICH, M. I. C. H. A. E. L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1410 - 1435
  • [6] SAMPLE SIZE ESTIMATES FOR RISK-NEUTRAL SEMILINEAR PDE-CONSTRAINED OPTIMIZATION
    Milz, Johannes
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 844 - 869
  • [7] A Multigrid Solver for PDE-Constrained Optimization with Uncertain Inputs
    Ciaramella, Gabriele
    Nobile, Fabio
    Vanzan, Tommaso
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)
  • [8] PERFORMANCE BOUNDS FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY
    Chen, Peng
    Royset, Johannes O.
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 1828 - 1854
  • [9] Algorithms for PDE-constrained optimization
    Herzog R.
    Kunisch K.
    GAMM Mitteilungen, 2010, 33 (02) : 163 - 176
  • [10] Risk-neutral PDE-constrained generalized Nash equilibrium problems
    Gahururu, Deborah B.
    Hintermueller, Michael
    Surowiec, Thomas M.
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1287 - 1337