Robust observable control of open and closed quantum systems

被引:4
作者
Bhutoria, Vaibhav [1 ]
Koswara, Andrew [1 ]
Chakrabarti, Raj [2 ,3 ]
机构
[1] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Chakrabarti Adv Technol, Div Fundamental Res, PMC Grp Bldg, Mt Laurel, NJ USA
[3] Carnegie Mellon Univ, Dept Chem Engn, Ctr Adv Proc Decis Making, Pittsburgh, PA 15213 USA
关键词
quantum control; robust control; open quantum systems; quantum computing; ALGORITHM; MOLECULES; DYNAMICS;
D O I
10.1088/1751-8121/ac623f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent work, we introduced the asymptotic theory of quantum robust control, which enables control of moments of quantum observables and gates in the presence of Hamiltonian uncertainty or field noise. In this paper, we extend this theory of quantum robust control to encompass two of the most important generalizations: robust control of arbitrary quantum observables and robust control of quantum systems sustaining environmental decoherence. In addition, we present deterministic Pareto optimization algorithms that can be applied in conjunction with either asymptotic or leading order measures of robustness. This enables robust control of any observable in quantum systems with any initial density matrix, and for which the entropy can change arbitrarily during the time evolution. Methods for robust optimal control of open quantum systems are presented that maximize the expected value of a quantum control objective while minimizing the expected environmentally induced decoherence.
引用
收藏
页数:34
相关论文
共 50 条
[41]   Rapid and robust control of single quantum dots [J].
Accanto, Nicolo ;
de Roque, Pablo M. ;
Galvan-Sosa, Marcial ;
Christodoulou, Sotirios ;
Moreels, Iwan ;
van Hulst, Niek F. .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e16239-e16239
[42]   WavePacket: A Matlab package for numerical quantum dynamics. II: Open quantum systems, optimal control, and model reduction [J].
Schmidt, Burkhard ;
Hartmann, Carsten .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 228 :229-244
[43]   Quantum control of nuclear magnetic resonance spin systems [J].
Li Jun ;
Cui Jiang-Yu ;
Yang Xiao-Dong ;
Luo Zhi-Huang ;
Pan Jian ;
Yu Qi ;
Li Zhao-Kai ;
Peng Xin-Hua ;
Du Jiang-Feng .
ACTA PHYSICA SINICA, 2015, 64 (16)
[44]   Supervised learning for robust quantum control in composite-pulse systems [J].
Shi, Zhi-Cheng ;
Ding, Jun -Tong ;
Chen, Ye-Hong ;
Ding, Jun-Tong ;
Song, Jie ;
Xia, Yan ;
Yi, X. X. ;
Nori, Franco .
PHYSICAL REVIEW APPLIED, 2024, 21 (04)
[45]   Simulating open quantum systems with giant atoms [J].
Chen, Guangze ;
Kockum, Anton Frisk .
QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (02)
[46]   Control problems in quantum systems [J].
Wu ReBing ;
Zhang Jing ;
Li ChunWen ;
Long GuiLu ;
Tarn TzyhJong .
CHINESE SCIENCE BULLETIN, 2012, 57 (18) :2194-2199
[47]   Problem of coherent control in non-Markovian open quantum systems [J].
Addis, Carole ;
Laine, Elsi-Mari ;
Gneiting, Clemens ;
Maniscalco, Sabrina .
PHYSICAL REVIEW A, 2016, 94 (05)
[48]   Optimal Control of Open Quantum Systems: Cooperative Effects of Driving and Dissipation [J].
Schmidt, R. ;
Negretti, A. ;
Ankerhold, J. ;
Calarco, T. ;
Stockburger, J. T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[49]   Locality and thermalization in closed quantum systems [J].
Sirker, J. ;
Konstantinidis, N. P. ;
Andraschko, F. ;
Sedlmayr, N. .
PHYSICAL REVIEW A, 2014, 89 (04)
[50]   Robust stabilization of driftless systems with hybrid open-loop/feedback control [J].
Morin, P ;
Samson, C .
PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, :3929-3933