An unfitted finite element method using discontinuous Galerkin

被引:95
作者
Bastian, Peter [1 ]
Engwer, Christian [1 ]
机构
[1] Heidelberg Univ, Interdisziplinares Zentrum Wissensch Rechen, D-69120 Heidelberg, Germany
关键词
discontinuous Galerkin method; finite elements; higher order; complex domain; unfitted finite elements; structured grids; DIFFUSION-PROBLEMS; ANGLE CONDITION; EQUATIONS;
D O I
10.1002/nme.2631
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present a new approach to Simulations on complex-shaped domains. The method is based on a discontinuous Galerkin (DG) method, using trial and test functions defined on a structured grid. Essential boundary conditions are imposed weakly via the DG formulation. This method offers a discretization where the number of unknowns is independent of the complexity of the domain. We will show numerical Computations for an elliptic scalar model problem in R-2 and R-3. Convergence rates for different polynomial degrees are studied. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1557 / 1576
页数:20
相关论文
共 27 条
[1]  
[Anonymous], 1986, THEORIE NUMERIK ELLI
[2]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[3]   FITTED AND UNFITTED FINITE-ELEMENT METHODS FOR ELLIPTIC-EQUATIONS WITH SMOOTH INTERFACES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (03) :283-300
[4]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[5]  
BASTIAN P, 2004, 200428 IWR U HEID
[6]  
BERNARDI C., 1994, COLL FRANC SEM
[7]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[8]   DIRECT SOLUTION OF DISCRETE POISSON EQUATION ON IRREGULAR REGIONS [J].
BUZBEE, BL ;
DORR, FW ;
GEORGE, JA ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :722-&
[9]   Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems [J].
Dolejsí, V ;
Feistauer, M ;
Sobotíková, V .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (25-26) :2709-2733
[10]  
ENGWER C, 2005, 5707 IWR U HEID