Lyapunov-theory-based radial basis function networks for adaptive filtering

被引:39
作者
Seng, KP [1 ]
Man, ZH
Wu, HR
机构
[1] Monash Univ, Sch Engn, Selangor, Malaysia
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 2263, Singapore
[3] Monash Univ, Sch Comp Sci & Software Engn, Clayton, Vic 3168, Australia
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 2002年 / 49卷 / 08期
关键词
adaptive filtering; Lyapunov stability theory; radial basis function neural network;
D O I
10.1109/TCSI.2002.801255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two important convergence properties of Lyapunov-theory-based adaptive filtering (LAF) adaptive filters are first explored. The LAF finite impulse response and infinite impulse response adaptive filters are then realized using the radial basis function (RBF) neural networks (NNs). The proposed adaptive RBF neural filtering system possesses the distinctive properties of RBF NN and the LAF filtering system. Unlike many adaptive filtering schemes using gradient search techniques, a Lyapunov function of the error between the desired signal and the RBF NN output is first defined. By properly choosing the weights update law in the Lyapunov sense, the RBF filter output can asymptotically converge to the desired signal. The design is independent of the stochastic properties of the input disturbances and the stability is guaranteed by the Lyapunov stability theory. Simulation examples for nonlinear adaptive prediction of nonstationary signal and system identification are performed.
引用
收藏
页码:1215 / 1220
页数:6
相关论文
共 13 条
[1]   Nonlinear adaptive prediction of speech with a pipelined recurrent neural network [J].
Baltersee, J ;
Chambers, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (08) :2207-2216
[2]   RECURRENT RADIAL BASIS FUNCTION NETWORKS FOR ADAPTIVE NOISE CANCELLATION [J].
BILLINGS, SA ;
FUNG, CF .
NEURAL NETWORKS, 1995, 8 (02) :273-290
[3]   A robust recursive least squares algorithm [J].
Chansarkar, MM ;
Desai, UB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (07) :1726-1735
[4]   APPLICATION OF FAST KALMAN ESTIMATION TO ADAPTIVE EQUALIZATION [J].
FALCONER, DD ;
LJUNG, L .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1978, 26 (10) :1439-1446
[5]   On-line supervised adaptive training using radial basis function networks [J].
Fung, CF ;
Billings, SA ;
Luo, W .
NEURAL NETWORKS, 1996, 9 (09) :1597-1617
[6]   NONLINEAR ADAPTIVE PREDICTION OF NONSTATIONARY SIGNALS [J].
HAYKIN, S ;
LI, L .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (02) :526-535
[7]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[8]   ERROR PROPAGATION PROPERTIES OF RECURSIVE LEAST-SQUARES ADAPTATION ALGORITHMS [J].
LJUNG, S ;
LJUNG, L .
AUTOMATICA, 1985, 21 (02) :157-167
[9]   LEAST-SQUARES ALGORITHMS FOR ADAPTIVE EQUALIZERS [J].
MUELLER, MS .
BELL SYSTEM TECHNICAL JOURNAL, 1981, 60 (08) :1905-1925
[10]  
PARKE AL, 1991, INFLAMMOPHARMACOLOGY, V1, P3