Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes

被引:250
作者
Ran, Qichun [1 ]
Yang, Weihu [1 ]
Hu, Yan [1 ]
She, Xinkun [1 ]
Yu, Yonglin [1 ]
Xiang, Yang [1 ]
Cai, Kaiyong [1 ]
机构
[1] Chongqing Univ, Coll Bioengn, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; Porous Ti6Al4V scaffold; Mechanical property; Cell behavior; Osteointegration; MICRO-COMPUTED-TOMOGRAPHY; IN-VIVO; TITANIUM IMPLANTS; BONE INGROWTH; MECHANICAL-PROPERTIES; CORTICAL BONE; SCAFFOLDS; FABRICATION; POROSITY; GROWTH;
D O I
10.1016/j.jmbbm.2018.04.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Selective laser melting (SLM) is one of the three-dimensional (3D) printing techniques that manufacturing versatile porous scaffolds with precise architectures for potential orthopedic application. To understand how the pore sizes of porous Ti6Al4V scaffolds affect their biological performances, we designed and fabricated porous Ti6Al4V implants with straightforward pore dimensions (500, 700, and 900 um) via SLM, termed as p500, p700, and p900 respectively. The morphological characteristics of Ti6Al4V scaffolds were assessed showing that the actual pore sizes of these scaffolds were 401 +/- 26 mu m, 607 +/- 24 mu m, 801 +/- 33 mu m, respectively. The mechanical properties of Ti6Al4V scaffolds were also evaluated showing that they were comparable to that of bone tissues. Meanwhile, the effect of pore size on biological responses was systematically investigated in vitro and in vivo. It was verified that 3D printing technique was able to fabricate porous Ti6Al4V implants with proper mechanical properties analogous to human bone. The in vitro results revealed that scaffolds with appropriate pore dimension were conducive to cell adhesion, proliferation and early differentiation. Furthermore, the porous Ti6Al4V scaffolds were implanted into the rabbit femur to investigate bone regeneration performance, the in vivo experiment showed the p700 sample was in favor of bone ingrowth into implant pores and bone-implant fixation stability. Taken together, the biological performance of p700 group with actual pore size of about 600 um was superior to other two groups. The obtained findings provide basis to individually design and fabricate suitable porous Ti6Al4V with specific geometries for orthopedic application.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 46 条
[1]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[2]  
[Anonymous], ANN BIOMED ENG
[3]   High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints [J].
Arabnejad, Sajad ;
Johnston, R. Burnett ;
Pura, Jenny Ann ;
Singh, Baljinder ;
Tanzer, Michael ;
Pasini, Damiano .
ACTA BIOMATERIALIA, 2016, 30 :345-356
[4]   Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants [J].
Bacakova, Lucie ;
Filova, Elena ;
Parizek, Martin ;
Ruml, Tomas ;
Svorcik, Vaclav .
BIOTECHNOLOGY ADVANCES, 2011, 29 (06) :739-767
[5]  
Bai F, 2010, TISSUE ENG PT A, V16, P3791, DOI [10.1089/ten.tea.2010.0148, 10.1089/ten.TEA.2010.0148]
[6]   Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography [J].
Baril, E. ;
Lefebvre, L. P. ;
Hacking, S. A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (05) :1321-1332
[7]   Recent advances in bone tissue engineering scaffolds [J].
Bose, Susmita ;
Roy, Mangal ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) :546-554
[8]   Peri- and intra-implant bone response to microporous Ti coatings with surface modification [J].
Braem, Annabel ;
Chaudhari, Amol ;
Cardoso, Marcio Vivan ;
Schrooten, Jan ;
Duyck, Joke ;
Vleugels, Jozef .
ACTA BIOMATERIALIA, 2014, 10 (02) :986-995
[9]   Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability [J].
Bsat, Suzan ;
Yavari, Saber Amin ;
Munsch, Maximilian ;
Valstar, Edward R. ;
Zadpoor, Amir A. .
MATERIALS, 2015, 8 (04) :1612-1625
[10]   Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth [J].
Chang, Bei ;
Song, Wen ;
Han, Tianxiao ;
Yan, Jun ;
Li, Fuping ;
Zhao, Lingzhou ;
Kou, Hongchao ;
Zhang, Yumei .
ACTA BIOMATERIALIA, 2016, 33 :311-321