Hot spots of solutions to the heat equation with inverse square potential

被引:4
作者
Ishige, Kazuhiro [1 ]
Kabeya, Yoshitsugu [2 ]
Mukai, Asato [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
[2] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka, Japan
基金
日本学术振兴会;
关键词
Hot spots; heat equation; inverse square potential; LARGE TIME BEHAVIOR; KERNEL; CRITICALITY; MOVEMENT; INEQUALITY; OPERATOR; BOUNDS; DOMAIN; NORMS;
D O I
10.1080/00036811.2018.1466284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the large time behavior of the hot spots of the solution to the Cauchy problem where and decays quadratically as . In this paper, based on the arguments in [K. Ishige and A. Mukai, to appear in Discrete Contin. Dyn. Syst.], we classify the large time behavior of the hot spots of u and reveal the relationship between the behavior of the hot spots and the harmonic functions for .
引用
收藏
页码:1843 / 1861
页数:19
相关论文
共 50 条
[41]   Coupling constant dependence for the Schrödinger equation with an inverse-square potential [J].
A. G. Smirnov .
Advances in Operator Theory, 2021, 6
[42]   The zero-mass spinless Salpeter equation with a regularized inverse square potential [J].
Chargui, Y. ;
Trabelsi, A. .
PHYSICS LETTERS A, 2013, 377 (3-4) :158-166
[43]   Energy scattering for a 3D Hartree equation with inverse square potential [J].
Saanouni, Tarek ;
Ghanmi, Radhia .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4) :329-348
[44]   On the instability of standing waves for the nonlinear Schrodinger equation with inverse-square potential [J].
Van Duong Dinh .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (10) :1699-1716
[45]   The energy-critical nonlinear wave equation with an inverse-square potential [J].
Miao, Changxing ;
Murphy, Jason ;
Zheng, Jiqiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (02) :417-456
[46]   UNIQUENESS FOR THE SCHRO<spacing diaeresis>DINGER EQUATION WITH AN INVERSE SQUARE POTENTIAL AND APPLICATION TO CONTROLLABILITY AND INVERSE PROBLEMS [J].
Chorfi, Salah-eddine .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2024,
[47]   CLASSIFICATION OF LOCAL ASYMPTOTICS FOR SOLUTIONS TO HEAT EQUATIONS WITH INVERSE-SQUARE POTENTIALS [J].
Felli, Veronica ;
Primo, Ana .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (01) :65-107
[48]   NONCLASSICAL POTENTIAL SYMMETRIES AND INVARIANT SOLUTIONS OF HEAT EQUATION [J].
秦茂昌 ;
梅凤翔 ;
许学军 .
AppliedMathematicsandMechanics(EnglishEdition), 2006, (02) :241-246
[49]   Nonclassical potential symmetries and invariant solutions of heat equation [J].
Mao-chang Qin ;
Feng-xiang Mei ;
Xue-jun Xu .
Applied Mathematics and Mechanics, 2006, 27 :241-246
[50]   Nonclassical potential symmetries and invariant solutions of heat equation [J].
Qin, MC ;
Mei, FX ;
Xu, XJ .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (02) :241-246