A criterion of decomposability for degree 4 algebras with unitary involution

被引:8
作者
Karpenko, N
Quéguiner, A [1 ]
机构
[1] Univ Paris 13, Inst Galilee, UMR 7539, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
关键词
D O I
10.1016/S0022-4049(98)00136-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a degree 4 central simple algebra endowed with a unitary involution a. We prove that (A, sigma) is decomposable if and only if its discriminant (i.e. the Brauer class of its discriminant algebra) is trivial. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 7 条
[1]   Normal division algebras of degree four over an algebraic field [J].
Albert, A. Adrian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) :363-372
[2]   DIVISION ALGEBRAS OF DEGREE-4 AND DEGREE-8 WITH INVOLUTION [J].
AMITSUR, SA ;
ROWEN, LH ;
TIGNOL, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (02) :133-148
[3]  
Knus M.-A., 1991, B SOC MATH BELG A, V43, P89
[4]   PFAFFIANS, CENTRAL SIMPLE ALGEBRAS AND SIMILITUDES [J].
KNUS, MA ;
PARIMALA, R ;
SRIDHARAN, R .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (04) :589-604
[5]   Cohomological invariants of algebras with involution [J].
Queguiner, A .
JOURNAL OF ALGEBRA, 1997, 194 (01) :299-330
[6]   CENTRAL SIMPLE ALGEBRAS [J].
ROWEN, LH .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (2-3) :285-301
[7]   EXISTENCE OF INVOLUTIONS IN SIMPLE ALGEBRAS .2. [J].
SCHARLAU, W .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (03) :399-404