Discretized Riemannian Delaunay triangulations

被引:9
作者
Rouxel-Labbe, M. [1 ,2 ]
Wintraecken, M. [2 ]
Boissonnat, J. -D. [2 ]
机构
[1] GeometryFactory, 1501 Route Dolines, F-06560 Valbonne, France
[2] INRIA Sophia Antipolis, 2004 Route Lucioles, F-06902 Valbonne, France
来源
25TH INTERNATIONAL MESHING ROUNDTABLE | 2016年 / 163卷
基金
欧洲研究理事会;
关键词
Anisotropic mesh generation; Delaunay triangulation; Voronoi diagram; Geodesic distance;
D O I
10.1016/j.proeng.2016.11.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anisotropic meshes are desirable for various applications, such as the numerical solving of partial differential equations and graphics. In this paper, we introduce an algorithm to compute discrete approximations of Riemannian Voronoi diagrams on 2-manifolds. This is not straightforward because geodesics, shortest paths between points, and therefore distances cannot in general be computed exactly. Our implementation employs recent developments in the numerical computation of geodesic distances and is accelerated through the use of an underlying anisotropic graph structure. We give conditions that guarantee that our discrete Riemannian Voronoi diagram is combinatorially equivalent to the Riemannian Voronoi diagram and that its dual is an embedded triangulation, using both approximate geodesics and straight edges. Both the theoretical guarantees on the approximation of the Voronoi diagram and the implementation are new and provide a step towards the practical application of Riemannian Delaunay triangulations. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 45 条
[1]   Variational tetrahedral meshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Yvinec, M ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :617-625
[2]  
[Anonymous], THESIS
[3]  
Aurenhammer F, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P201, DOI 10.1016/B978-044482537-7/50006-1
[4]  
Boissonnat J.-D., 2008, ACSTR362603 INRIA
[5]  
Boissonnat J.-D., 2014, RES REPORT
[6]  
Boissonnat J. - D., 2013, RR8273 INRIA
[7]   ANISOTROPIC DELAUNAY MESH GENERATION [J].
Boissonnat, Jean-Daniel ;
Wormser, Camille ;
Yvinec, Mariette .
SIAM JOURNAL ON COMPUTING, 2015, 44 (02) :467-512
[8]   Anisotropic Delaunay Meshes of Surfaces [J].
Boissonnat, Jean-Daniel ;
Shi, Kan-Le ;
Tournois, Jane ;
Yvinec, Mariette .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (02)
[9]   Locally Uniform Anisotropic Meshing [J].
Boissonnat, Jean-Daniel ;
Wormser, Camille ;
Yvinec, Mariette .
PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, :270-277
[10]   Delaunay mesh generation governed by metric specifications .1. Algorithms [J].
Borouchaki, H ;
George, PL ;
Hecht, F ;
Laug, P ;
Saltel, E .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 25 (1-2) :61-83