Stability in semilinear problems

被引:26
作者
Idczak, D [1 ]
机构
[1] Univ Lodz, Fac Math, PL-90238 Lodz, Poland
关键词
D O I
10.1006/jdeq.1999.3681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we derive results concerning a continuous dependence of solutions on the right-hand side for a semilinear operator equation Lu = del g(u) by assuming that L.: D(L) subset of H --> H (H - a Hilbert space) is self-adjont, with a closed range, and g: H --> R is continuous convex on H and Gateaux differentiable on D(L). Using these results, we obtain theorems on the continuous dependence of solutions on Functional parameters for a semilinear problem of the second order u + au = DuF(t, u, omega), t epsilon[0,pi] a.e., with the Dirichlet boundary conditions u(0) = u(pi) = 0, where a greater than or equal to 1, and omega is a functional parameter. (C) 2000 Academic Press.
引用
收藏
页码:64 / 90
页数:27
相关论文
共 19 条
[1]  
[Anonymous], B CLASSE SCI ACAD RO
[2]   PERIODIC-SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS AND HAMILTONIAN-SYSTEMS [J].
BREZIS, H ;
CORON, JM .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :559-570
[4]  
Brezis H., 1983, ANAL FONCTIONELLE TH
[5]  
Brezis H., 1980, COMMUN PUR APPL MATH, V3, P667, DOI DOI 10.1002/CPA.3160330507
[6]  
IDEZAK D, IN PRESS KRASNOSELSK
[8]  
KRASNOSELSKII M., 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[9]  
Lavrent'ev M.M., 1995, LINEAR OPERATORS ILL
[10]  
Lepin A., 1973, DIFF EQUAT, V9, P626